Đại số lớp 7

CV

Chứng minh:

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

TL
15 tháng 6 2017 lúc 11:04

không biết có đúng không.vui

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{2ab}{2cd}=\dfrac{a^2+b^2+2ab}{c^2+d^2+2cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\left(1\right)\)

Từ điều 1 ta có:\(\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\dfrac{a.b}{c.d}\Rightarrow\dfrac{c.\left(a+b\right)}{a.\left(c+d\right)}=\dfrac{b.\left(c+d\right)}{d.\left(a+b\right)}\)

\(\Rightarrow\dfrac{ca+cb}{ca+ad}=\dfrac{cb+bd}{ad+bd}=\dfrac{ca-bd}{ca+bd}=\dfrac{1}{1}\)

\(\Rightarrow ca+cb=ca+ad\Rightarrow cb=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)

Bình luận (0)
DH
14 tháng 6 2017 lúc 18:54

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)

\(\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)(đpcm)

Chúc bạn học tốt!!!

Bình luận (3)

Các câu hỏi tương tự
NC
Xem chi tiết
PT
Xem chi tiết
PM
Xem chi tiết
NC
Xem chi tiết
GT
Xem chi tiết
ND
Xem chi tiết
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết