không biết có đúng không.
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{2ab}{2cd}=\dfrac{a^2+b^2+2ab}{c^2+d^2+2cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{ab}{cd}\left(1\right)\)
Từ điều 1 ta có:\(\dfrac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\dfrac{a.b}{c.d}\Rightarrow\dfrac{c.\left(a+b\right)}{a.\left(c+d\right)}=\dfrac{b.\left(c+d\right)}{d.\left(a+b\right)}\)
\(\Rightarrow\dfrac{ca+cb}{ca+ad}=\dfrac{cb+bd}{ad+bd}=\dfrac{ca-bd}{ca+bd}=\dfrac{1}{1}\)
\(\Rightarrow ca+cb=ca+ad\Rightarrow cb=ad\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)(đpcm)
Chúc bạn học tốt!!!