Những câu hỏi liên quan
LA
Xem chi tiết

C lớn nhất khi (x-3)2+1 bé nhất 

=>x2-9 +1 bé nhất 

x2-8 bé nhất 

=>x2 khác 8 và x2-8 bé nhất => x2 -8=1

=>x2=9=>x=3

D lớn nhất khi |x-2|+2 bé nhất =>x-2 bé nhất=>x-2=0 =>x=2

Bình luận (0)
TN
Xem chi tiết
H24
21 tháng 7 2021 lúc 8:09

e) E >= 2021 

dấu = xảy ra khi x=1/2

g) G = |x-1|+ |2-x| >= |x-1+2-x|=1

Dấu = xảy ra khi (x-1)(2-x)>=0 <=> 1<=x<=2

h) H = |x-1|+|x-2| + |x-3| 

Ta có : |x-1| + |x-3| = |x-1| + |3-x| >= |x-1+3-x| = 2

|x-2| >=0

=> H>=2

Dấu = xảy ra khi (x-1)(3-x) >=0 ; x-2=0

<=> x=2

k) K = |x-1| + |2x-1| 

2K = |2x-2| + |2x-1| + |2x-1|

Ta có : |2x-2| + |2x-1|  = |2x-2| + |1-2x| >= |2x-2+1-2x|=1

|2x-1| >=0 

Dấu = xảy ra (2x-2)(1-2x) >=0; 2x-1=0

<=> x=1/2

Bình luận (0)
CV
21 tháng 7 2021 lúc 8:57

e)Vì \(\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ \Rightarrow2\left|x-\dfrac{1}{2}\right|+2012\ge2012\forall x\)

Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)

Vậy...

b)G=|x-1|+ |2-x|\(\)

áp dụng bđt |a+b|+ |c+d|\(\ge\left|a+b+c+d\right|\forall x\)

\(\Rightarrow\)ta có |x-1|+ |2-x|\(\ge\) \(\left|x-1+2-x\right|\forall x\)

\(\Leftrightarrow\text{|x-1|+ |2-x| }\ge1\forall x\)

Dấu "=" xảy ra khi 1\(\le x\le2\) \(\forall x\)

Vậy...

h)H= |x-1|+|x-2| + |x-3| 

Ta có |x-1| + |x-3|         

=|x-1| + |3-x| ( trong giá trị tuyệt đối đổi dấu không cần đặt dấu trừ ở ngoài)       

 =>|x-1| + |3-x|\(\ge\left|x-1+3-x\right|\forall x\)          

<=>|x-1| + |3-x|\(\ge2\forall x\) (1)

Mà |x-2|\(\ge0\forall x\) (2)

Từ (1) và (2)=> ta có |x-1|+|x-2| + |x-3| \(\ge2\forall x\)

Dấu "=" xảy ra khi x-2=0

<=>x=2

Vậy...

k) K = |x-1| + |2x-1| 

2K = |2x-2| + |2x-1| + |2x-1|

Mà : |2x-2| + |2x-1| 

=|2x-2| + |1-2x|\(\ge\text{|2x-2+1-2x|}\) \(\forall x\)

Lại có |2x-1| \(\ge\)\(\forall x\)

Dấu "=" xảy ra 2x-1=0

<=>x=\(\dfrac{1}{2}\)

Vậy....

Bình luận (0)
TN
Xem chi tiết
TN
Xem chi tiết
NT
20 tháng 7 2021 lúc 19:51

e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bình luận (0)
NH
Xem chi tiết
NV
23 tháng 5 2017 lúc 21:19

Coi có sai đề k

Bình luận (0)
TN
Xem chi tiết
NL
6 tháng 7 2021 lúc 15:51

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có : \(P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)

\(=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2-x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b, Ta có : \(P=-x+\sqrt{x}=-x+\dfrac{2.\sqrt{x}.1}{2}-\dfrac{1}{4}+\dfrac{1}{4}\)

\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

Vậy \(Max=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{4}\)

Bình luận (0)
AH
6 tháng 7 2021 lúc 15:51

Lời giải:

ĐKXĐ: $x\geq 0; x\neq 1$

a. 

\(A=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(1-x)^2}{2(x+2\sqrt{x}+1)}=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(\sqrt{x}-1)^2(\sqrt{x}+1)^2}{2(\sqrt{x}+1)^2}\)

\(=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(\sqrt{x}-1)^2}{2}=\frac{2\sqrt{x}-2x}{2}=\sqrt{x}-x\)

b.

$\sqrt{x}-x=\frac{1}{4}-(x-\sqrt{x}+\frac{1}{4})$

$=\frac{1}{4}-(\sqrt{x}-\frac{1}{2})^2$

$\leq \frac{1}{4}$

Vậy GTLN của biểu thức là $\frac{1}{4}$. Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$ (thỏa đkxđ)

 

Bình luận (0)
DD
Xem chi tiết
KA
8 tháng 3 2017 lúc 11:41

Ta có :

\(\left|x\right|\ge0\)

\(\left|x+2\right|\ge0\)

\(\Rightarrow\left|x\right|+\left|x+2\right|\ge0\)

\(\Rightarrow4x-2010\ge0\)

\(\Rightarrow4x\ge2010\)

\(\Rightarrow x\ge0\)

=> x + x + 2 = 4x - 2010

=> 2x + 2 = 4x - 2010

=> 4x - 2x = 2 + 2010

=> 2x = 2012

=> x = 1006

Bình luận (0)
BH
8 tháng 3 2017 lúc 11:39

+/ x\(\ge\)0 => phương trình <=> x+x+2=4x-2010 => x=2012:2=1006

+/ x\(\le\)-2 => phương trình <=> -x-x-2=4x-2010 => x=2008:6=> Loại

+/ -2\(\le\)x\(\le\)0 => phương trình <=> -x+x+2=4x-2010 => x=2012:4=503

ĐS: x=1006 và x=503

Bình luận (0)
DC
8 tháng 3 2017 lúc 11:59

106 nha bn,k cho mk nha

Bình luận (0)
H24
Xem chi tiết
H24
27 tháng 10 2019 lúc 10:07

Gọi thương của phép chia là Q(x)

Ta có: (x3+ax+b)=(x2-x-x).Q(x) đúng \(\forall x\)

          x3+ax+b=(x+1)(x-2).Q(x) đúng\(\forall x\)       (1)

*Chọn x=2 thay vào (1)

\(\Rightarrow2^3+a.2+b=0\)

\(\Rightarrow2a+b=-8\)                                  (2)

*Chọn x=-1 thay vào (1)

\(\Rightarrow\left(-1\right)^3+a.\left(-1\right)+b=0\)

\(\Rightarrow-a+b=1\)                                     (3)

Từ (2) và (3)

\(\Rightarrow\hept{\begin{cases}2a+b=-8\\-a+b=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3a=-9\\-a+b=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-3\\-\left(-3\right)+b=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=-3\\b=-2\end{cases}}\)

\(Vậy\)\(a=-3;b=-2\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
27 tháng 10 2019 lúc 10:09

Cảm ơn bạn nhìu ak ^_^

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
AM
29 tháng 6 2015 lúc 22:24

\(x+\left(\frac{-31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)

<=>\(x+x=\frac{31^2}{12^2}+\frac{49^2}{12^2}\)

<=>\(2x=\frac{3362}{144}=\frac{1681}{72}\)

<=>\(x=\frac{1681}{144}\)

=>\(y^2=x+\left(-\frac{39}{12}\right)^2=\frac{1681}{144}+\frac{1521}{144}=\frac{1601}{72}\Rightarrow y=^+_-\sqrt{\frac{1601}{72}}\)

Bình luận (0)
NA
Xem chi tiết
MN
6 tháng 6 2016 lúc 21:01

Ta có: 2x(3y-2)+(3y-2) = -55

=>(2x-1)(3y-2)=-55

=>2x-1 và 3y-2 là các ước của -55

mà Ư(-55)={-1;1;-5;5;-11;11;-55;55}

=>Ta có bảng sau:

2x - 1

3y - 2 

x

y

(tự thay số vào làm nha, mk chỉ hướng dẫn thôi, bài này k khó chỉ là bước thay số hơi dài, chúc hk tốt!!!)

Bình luận (0)