Những câu hỏi liên quan
H24
Xem chi tiết
MH
17 tháng 9 2021 lúc 14:48

1) \(x:y:z=2:3:4\) ⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

⇒ x=4;y=6;z=8

Bình luận (0)
NM
17 tháng 9 2021 lúc 14:53

\(1,\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot4=8\end{matrix}\right.\)

\(2,\) Áp dụng t/c dtsbn

\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{z}{4}=\dfrac{4x}{8}=\dfrac{3y}{-9}=\dfrac{2z}{8}=\dfrac{4x-3y-2z}{8-\left(-9\right)-8}=\dfrac{81}{9}=9\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot\left(-3\right)=-6\\z=2\cdot4=8\end{matrix}\right.\)

\(3,4y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{4}\Rightarrow\dfrac{y}{6}=\dfrac{z}{8};\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{9}=\dfrac{y}{6}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}\)

Áp dụng t/c dtsbn

\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{8}=\dfrac{x+y+z}{9+6+8}=\dfrac{46}{23}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=2\cdot6=12\\z=2\cdot8=16\end{matrix}\right.\)

\(4,5x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\Rightarrow\dfrac{x}{9}=\dfrac{y}{15};\dfrac{y}{z}=\dfrac{3}{2}\Rightarrow\dfrac{y}{3}=\dfrac{z}{2}\Rightarrow\dfrac{y}{15}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}\)

Áp dụng t/c dtsbn:

\(\dfrac{x}{9}=\dfrac{y}{15}=\dfrac{z}{10}=\dfrac{2x}{18}=\dfrac{3y}{45}=\dfrac{4z}{40}=\dfrac{2x+3y-4z}{18+45-40}=\dfrac{34}{23}\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{34}{23}\cdot9=\dfrac{306}{23}\\y=\dfrac{34}{23}\cdot15=\dfrac{510}{23}\\z=\dfrac{34}{23}\cdot10=\dfrac{340}{23}\end{matrix}\right.\)

Bình luận (0)
DD
Xem chi tiết
LP
Xem chi tiết
NM
4 tháng 10 2021 lúc 21:16

\(=x^3+64\\ =x^3-27y^3\\ =x^6-\dfrac{1}{27}\)

Bình luận (0)
NT
4 tháng 10 2021 lúc 21:22

\(\left(x+4\right)\left(x^2-4x+16\right)=x^3+64\)

\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)

\(\left(x^2-\dfrac{1}{3}\right)\left(x^4+\dfrac{1}{3}x^2+\dfrac{1}{9}\right)=x^6-\dfrac{1}{27}\)

Bình luận (0)
VN
Xem chi tiết
NL
18 tháng 9 2021 lúc 22:12

\(VT=\dfrac{x}{y+z}+1+\dfrac{25y}{x+z}+25+\dfrac{4z}{x+y}+4-30\)

\(VT=\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{25}{x+z}+\dfrac{4}{x+y}\right)-30\)

\(VT\ge\left(x+y+z\right).\dfrac{\left(1+5+2\right)^2}{2\left(x+y+z\right)}-30=2\)

Nhưng dấu "=" không xảy ra với x;y;z dương

Bình luận (0)
BN
Xem chi tiết
ND
22 tháng 12 2017 lúc 15:00

5a.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{19.21}\\ =\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{19}-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{21}\right)\\ =\dfrac{1}{2}.\dfrac{20}{21}=\dfrac{10}{21}\)

b.

\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\\ =\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\\ =\dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)< \dfrac{1}{2}.1=\dfrac{1}{2}\)

Bình luận (0)
PT
Xem chi tiết
NT
11 tháng 2 2022 lúc 12:23

b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)

Đặt \(x=15k;y=20k;z=24k\)

Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)

Bình luận (0)
NC
11 tháng 2 2022 lúc 12:22

lk

Bình luận (0)
NT
11 tháng 2 2022 lúc 12:31

a, \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\Leftrightarrow\dfrac{2x-7}{14}=\dfrac{y}{y+1}\Rightarrow\left(2x-7\right)\left(y+1\right)=14y\)

\(\Leftrightarrow2xy+2x-7y-7=14y\Leftrightarrow2xy+2x-21y-7=0\)

\(\Leftrightarrow2x\left(y+1\right)-21\left(y+1\right)+14=0\Leftrightarrow\left(2x-21\right)\left(y+1\right)=-14\)

\(\Rightarrow2x-21;y+1\inƯ\left(-14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)

2x - 21 1 -1 2 -2 7 -7 14 -14
y + 1 -14 14 -7 7 -2 2 -1 1
x 11 10 loại loại 14 7 loại loại
y -15 13 loại loại -3 1 loại loại

 

Bình luận (0)
H24
Xem chi tiết
NL
22 tháng 3 2021 lúc 5:04

\(VT=\dfrac{x^2}{x^2+2xy+3zx}+\dfrac{y^2}{y^2+2yz+3xy}+\dfrac{z^2}{z^2+2zx+3yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+5xy+5yz+5zx}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+zx\right)}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(x+y+z\right)^2}=\dfrac{1}{2}\)

Bình luận (0)
HM
Xem chi tiết
NM
1 tháng 12 2021 lúc 20:45

\(1,\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x-3y+4z}{2-18+12}=\dfrac{24}{-4}=-6\\ \Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-36\\z=-18\end{matrix}\right.\\ 2,\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-5}{6}=\dfrac{-3x+3-4y-12+5z-25}{-6-16+30}=\dfrac{50-34}{8}=\dfrac{16}{8}=2\\ \Leftrightarrow\left\{{}\begin{matrix}x-1=4\\y+3=8\\z-5=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=5\\z=17\end{matrix}\right.\)

\(3,6x=10y=15z\Leftrightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\\ \Leftrightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y-z}{5+3-2}=\dfrac{90}{6}=15\\ \Leftrightarrow\left\{{}\begin{matrix}x=75\\y=45\\z=30\end{matrix}\right.\)

Bình luận (0)
NA
Xem chi tiết
DT
23 tháng 8 2021 lúc 7:55

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC :

`(x)/(3)=(y)/(4)=(x+y)/(3+4)=(90)/(7)`

`->` $\begin{cases}x=\dfrac{90}{7}.3=\dfrac{30}{7} \\ y=\dfrac{90}{7}.4=\dfrac{360}{7} \end{cases}$

     
Bình luận (1)
H24
23 tháng 8 2021 lúc 7:46

1)\(\dfrac{x}{5}=\dfrac{y}{3}\)        áp dụng...ta đc:

\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{20}{2}=10\)

x=50

y=30

Bình luận (0)
DT
23 tháng 8 2021 lúc 7:54

ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU, TA ĐƯỢC :

`(x)/(5)=(y)/(3)=(x-y)/(5-3)=(20)/(2)=10`

`->` $\begin{cases} x=10.5=50\\ y=10.3=30\end{cases}$

 

      
Bình luận (0)