Những câu hỏi liên quan
VD
Xem chi tiết
VD
Xem chi tiết
NL
Xem chi tiết
NL
8 tháng 2 2017 lúc 10:49

giúp mk vs

Bình luận (0)
LA
Xem chi tiết
PM
Xem chi tiết
BH
8 tháng 2 2017 lúc 10:12

A=\(\left[\frac{x\left(x-y\right)}{y\left(x+y\right)}+\frac{\left(x-y\right)\left(x+y\right)}{x\left(x+y\right)}\right]:\left[\frac{y^2}{x\left(x-y\right)\left(x+y\right)}+\frac{1}{x+y}\right]\frac{ }{ }\)

=\(\left[\frac{x^2\left(x-y\right)+y\left(x-y\right)\left(x+y\right)}{xy\left(x+y\right)}\right]:\left[\frac{y^2+x\left(x-y\right)}{x\left(x-y\right)\left(x+y\right)}\right]\)=\(\frac{\left(x-y\right)\left(x^2+y^2+xy\right)}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{y^2+x\left(x-y\right)}\)

=\(\frac{\left(x-y\right)^2\left(x^2+y^2+xy\right)}{y\left(x^2+y^2-xy\right)}\)=\(\frac{\left(x-y\right)^2\left(x^2+xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}{y\left(x^2-xy+\frac{y^2}{4}+\frac{3y^2}{4}\right)}\)=\(\frac{\left(x-y\right)^2\left[\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}{y.\left[\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}\right]}\)

Ta nhận thấy các số trong ngoặc đều dương.

=> Để A>0 thì y>0

Vậy để A>0 thì y>0 và với mọi x

Bình luận (0)
MR
Xem chi tiết
BT
Xem chi tiết
TT
Xem chi tiết
CP
Xem chi tiết
H24
22 tháng 8 2021 lúc 17:04

a, \(\left(x^2+2x+3\right)\left(x+2\right)=x^3+2x^2+3x+2x^2+4x+6=x^3+4x^2+7x+6\)

b,  \(\left(x^2+xy+y^2\right)\left(x-y\right)=x^3-y^3\)

c, \(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3+y^3\)

Bình luận (0)
NT
22 tháng 8 2021 lúc 20:40

a: Ta có: \(\left(x^2+2x+3\right)\left(x+2\right)\)

\(=x^3+2x^2+2x^2+4x+3x+6\)

\(=x^3+4x^2+7x+6\)

b: Ta có: \(\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)

\(=x^3-y^3\)

c: Ta có: \(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\)

Bình luận (0)