Những câu hỏi liên quan
DA
Xem chi tiết
AH
6 tháng 12 2023 lúc 15:15

Lời giải:

Đặt \(A=\frac{1}{7^2}-\frac{1}{7^4}+....+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(7^2A=1-\frac{1}{7^2}+....+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(\Rightarrow A+7^2A=1-\frac{1}{7^{100}}\Rightarrow 50A=1-\frac{1}{7^{100}}<1\)

$\Rightarrow A< \frac{1}{50}$

Bình luận (0)
NB
Xem chi tiết
TD
11 tháng 4 2022 lúc 13:59

đây là bài lớp 4 chứ

Bình luận (1)
H24
11 tháng 4 2022 lúc 13:59

15/7

Bình luận (0)
NK
11 tháng 4 2022 lúc 13:59

\(\dfrac{15}{7}\) :)

Bình luận (0)
NT
Xem chi tiết
NL
17 tháng 4 2022 lúc 12:01

Đặt \(A=\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}\)

\(7A=\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{99}}\)

\(\Rightarrow7A-A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)

\(\Rightarrow6A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)

\(\Rightarrow A=\dfrac{1}{6}\left(\dfrac{1}{7}-\dfrac{1}{7^{100}}\right)\)

Bình luận (0)
TK
Xem chi tiết
TN
29 tháng 10 2017 lúc 22:21

A=\(\dfrac{7^2-1}{7^4}+\dfrac{7^2-1}{7^8}+...+\dfrac{7^2-1}{7^{100}}=\left(7^2-1\right)\left(\dfrac{1}{7^4}+\dfrac{1}{7^8}+...+\dfrac{1}{7^{100}}\right)=48\cdot B\)Dễ dàng tính được B( nhân hết với 7 mũ 4 roi trừ đi, chia ra là xong) ra đpcm.

Lên lớp 11 thì ta có dạng tổng quát luôn này(tức là nếu n quá lớn thì có thể coi là xảy ra dấu bằng) \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^n}-\dfrac{1}{7^{n+2}}< \dfrac{1}{50}\)

Bình luận (0)
NH
Xem chi tiết
HQ
26 tháng 3 2017 lúc 17:34

Đặt \(S=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\)

\(\Rightarrow\dfrac{S}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\)

\(\Rightarrow S+\dfrac{S}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}-\dfrac{1}{7^{102}}\right)\)

\(\Leftrightarrow\dfrac{50S}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}< \dfrac{1}{50}\)

\(\Leftrightarrow S< \dfrac{1}{50}\)

Vậy \(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}-\dfrac{1}{7^{100}}< \dfrac{1}{50}\) (Đpcm)

Bình luận (0)
NK
Xem chi tiết
NM
31 tháng 10 2021 lúc 8:24

\(\Rightarrow x-1=\dfrac{6}{7}+\dfrac{1}{7}\times\left(\dfrac{2}{7}+\dfrac{5}{7}\right)=\dfrac{6}{7}+\dfrac{1}{7}\times1\\ \Rightarrow x-1=\dfrac{6}{7}+\dfrac{1}{7}=1\\ \Rightarrow x=1+1=2\)

Bình luận (0)
PN
15 tháng 11 2021 lúc 22:44

= 2

 

Bình luận (0)
TN
Xem chi tiết
LT
27 tháng 11 2017 lúc 21:59

Đặt \(A=\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{4n-2}}-\dfrac{1}{7^{4n}}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\)

Ta có:

\(\dfrac{A}{7^2}=\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\)

\(\Rightarrow A+\dfrac{A}{7^2}=\left(\dfrac{1}{7^2}-\dfrac{1}{7^4}+...+\dfrac{1}{7^{98}}+\dfrac{1}{7^{100}}\right)+\left(\dfrac{1}{7^4}-\dfrac{1}{7^6}+...+\dfrac{1}{7^{100}}+\dfrac{1}{7^{102}}\right)\)

\(\Rightarrow\dfrac{50A}{49}=\dfrac{1}{7^2}-\dfrac{1}{7^{102}}< \dfrac{1}{7^2}=\dfrac{1}{49}\)

\(\Rightarrow A< \dfrac{1}{50}\)

=> ĐPCM.

Bình luận (0)
NT
Xem chi tiết
H24
13 tháng 10 2019 lúc 21:06

\(\text{Đặt:}S=\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\Rightarrow49S=1-\frac{1}{7^2}+.....-\frac{1}{7^{98}}\Rightarrow49S+S=50S=\left(1-\frac{1}{7^2}+\frac{1}{7^4}-....-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+....-\frac{1}{7^{100}}\right)=1-\frac{1}{7^{100}}< 1\Rightarrow S< \frac{1}{50}\left(\text{đpcm}\right)\)

Bình luận (0)
AH
Xem chi tiết
NT
10 tháng 9 2021 lúc 23:14

\(B=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}\cdot\dfrac{858585}{313131}\cdot\left(-1\dfrac{14}{17}\right)\)

\(=\dfrac{1}{4}\cdot\dfrac{85}{31}\cdot\dfrac{-31}{17}\)

\(=\dfrac{-5}{4}\)

Bình luận (1)
EC
10 tháng 9 2021 lúc 23:43

Ta có: \(B=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4+\dfrac{4}{7}+\dfrac{4}{7^2}-\dfrac{4}{7^3}}.\dfrac{858585}{313131}.\left(-1\dfrac{14}{17}\right)\)

             \(=\dfrac{1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}}{4\left(1+\dfrac{1}{7}+\dfrac{1}{7^2}-\dfrac{1}{7^3}\right)}.\dfrac{85.10101}{32.10101}.\dfrac{-31}{17}=\dfrac{1}{4}.\dfrac{85}{31}.\dfrac{-31}{17}=-\dfrac{5}{4}\)

Bình luận (1)
KN
Xem chi tiết
NT
2 tháng 8 2023 lúc 13:51

a: =(2/7-2/7)(-4/7-5/9)=0

b:

Sửa đề: 9/13*(-12/17)+9/13*29/27

=9/13(-12/17+29/17)

=9/13*17/17=9/13

c: \(=\dfrac{1}{7}\left(4+\dfrac{6}{7}+\dfrac{8}{7}\right)=\dfrac{1}{7}\cdot6=\dfrac{6}{7}\)

d: =7/10(5/7+9/7+8/7+13/7)

=5*7/10=7/2

Bình luận (1)