Những câu hỏi liên quan
HP
Xem chi tiết
HP
26 tháng 7 2017 lúc 21:43

à thôi mk làm đc r  ,ko cần mn giải nữa 

Bình luận (0)
CT
Xem chi tiết
NH
21 tháng 1 2018 lúc 8:28

mình chịu lun

Bình luận (0)
ND
Xem chi tiết
LT
Xem chi tiết
AN
8 tháng 6 2018 lúc 9:47

Ta có:

\(\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\)

\(\Leftrightarrow x^2y^2-2xy-1=0\)

Giải ra tìm được xy thế vô pt sau giải tiếp

Bình luận (0)
TL
Xem chi tiết
TM
Xem chi tiết
MC
Xem chi tiết
NC
26 tháng 7 2019 lúc 9:33

ĐK: x-y>0

pt (2) <=> \(x^2+y^2-\frac{8xy}{x-y}=16\)

<=> \(x^2+y^2-2xy-\frac{8xy}{x-y}-16+2xy=0\)

<=> \(\left(x-y\right)^2-\frac{8xy}{x-y}-16+2xy=0\)

<=> \(\left(x-y\right)^3-16\left(x-y\right)+2xy\left(x-y\right)-8xy=0\)

<=> \(\left(x-y\right)\left(x-y-4\right)\left(x-y+4\right)+2xy\left(x-y-4\right)=0\)

<=> \(\left(x-y-4\right)\left[\left(x-y\right)\left(x-y+4\right)+2xy\right]=0\)(a)

Vì \(\left(x-y\right)\left(x-y+4\right)+2xy=\left(x-y\right)^2+4\left(x-y\right)+2xy=x^2+y^2+4\left(x-y\right)>0\)

Nên (a) <=> \(x-y-4=0\Leftrightarrow x=y+4\)thế vào pt (1) ta có:

\(\sqrt{4}+9=2y^2-\left(y+4\right)\Leftrightarrow2y^2-y-15=0\)

Em làm tiếp nhé! giải đen ta ra nghiệm đẹp.

Bình luận (0)
PB
Xem chi tiết
TL
3 tháng 5 2020 lúc 8:14

\(\hept{\begin{cases}y^6+y^3+2x^2=\sqrt{xy-x^2y^2}\left(1\right)\\4xy^3+y^2+\frac{1}{2}\ge2x^2+\sqrt{1+\left(2x-y\right)^2}\left(2\right)\end{cases}}\)

\(VP\left(1\right)=\sqrt{\frac{1}{4}-\left(xy-\frac{1}{2}\right)^2}\le\frac{1}{2}\Rightarrow VT\left(1\right)=y^6+y^3+2x^2\le\frac{1}{2}\)

\(\Leftrightarrow2x^2+2y^3+4x^2\le1\left(3\right)\)

Từ (2)(3) => \(8xy^3+2y^3+2\ge2y^6+4x^2+4x^2+2\sqrt{1+\left(2x-y\right)^2}\)

\(\Leftrightarrow8xy^3+2\ge2y^6+8x^2+2\sqrt{2+\left(2x-y\right)^2}\)

\(\Leftrightarrow4xy^3+1\ge y^6+4x^2+\sqrt{1+\left(2x-y\right)^2}\)

\(\Leftrightarrow1-\sqrt{1+\left(2x-y\right)^2}\ge y^6-4xy^3+4x^2=\left(y^3-2x\right)^2\left(4\right)\)

\(VT\left(4\right)\le0;VP\left(4\right)\ge0\). Do đó:

(4) \(\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=2x\end{cases}\Leftrightarrow\hept{\begin{cases}y=2x\\y^3=y\end{cases}}}\)<=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)

Thử lại chỉ có \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)thỏa mãn

Vậy hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\frac{-1}{2};-1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
LL
Xem chi tiết
KL
20 tháng 10 2023 lúc 8:19

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

Bình luận (0)