Những câu hỏi liên quan
MS
Xem chi tiết
PD
29 tháng 12 2018 lúc 15:35

\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left(a^2+b^2+2ab-2ab\right)+6a^2b^2\left(a+b\right)\)

\(M=a^2+2ab+b^2-3ab+3ab-6a^2b^2+6a^2b^2\)

\(M=\left(a+b\right)^2=1\)

Bình luận (0)
NB
1 tháng 4 2019 lúc 20:19

ngu lắm sơn à

Bình luận (0)
LK
19 tháng 7 2020 lúc 10:37

bạn Nguyễn Xuân Bảo có làm đc ko mà nói bạn đăng bài ngu :)) đây là trang học toán thì bạn ấy đăng bài ko bt làm lên thì đã sao :>

Bình luận (0)
 Khách vãng lai đã xóa
PV
Xem chi tiết
TH
12 tháng 3 2020 lúc 22:12

Câu hỏi tương tự có nha

Bình luận (0)
 Khách vãng lai đã xóa
PV
12 tháng 3 2020 lúc 22:19

oki bạn

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
GT
23 tháng 7 2018 lúc 8:35

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

M = (a + b).(a2 - ab + b2) + 3ab[a2 + b2 + 2ab(a + b)]

M = a2 - ab + b2 + 3ab(a2 + b2 + 2ab)

M = a2 - ab + b2 + 3ab(a + b)2

M = a2 - ab + b2 + 3ab

M = a2 + 2ab + b2

M = (a + b)2 = 1

Bình luận (0)
DT
Xem chi tiết
AZ
29 tháng 1 2020 lúc 0:29

\(1,M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)

Thay \(a+b=1\) vào ta được:

\(1\left(1-3ab\right)+3ab\left(1-2ab\right)+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

\(=1\)

Vậy ......................

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NT
30 tháng 1 2024 lúc 21:01

\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)

\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)

=1

Bình luận (0)
TH
Xem chi tiết
VL
22 tháng 12 2018 lúc 19:43

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

Bình luận (0)
YH
Xem chi tiết
NH
9 tháng 12 2019 lúc 20:52

Có: M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

=> M = (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

=> M = (a + b)[(a + b)2 - 3ab] + 3ab[(a + b)2 - 2ab] + 6a2b2(a + b)

=> M = 1 - 3ab + 3ab(1 - 2ab) + 6a2b2     (vì a+b=1)

=> M = 1 - 3ab + 3ab - 6a2b2 + 6a2b2 

=> M = 1

Vậy M = 1

Bình luận (0)
 Khách vãng lai đã xóa
LL
9 tháng 12 2019 lúc 20:59

M = \(a^3\)\(b^3\)+ 3ab ( \(a^2\)\(b^2\)) + \(6a^2\)\(b^2\)(a+b)

M = ( a + b ) ( \(a^2\)- ab + \(b^2\))  + 3ab [ \(a^2\)\(b^2\)+ 2ab( a + b )

M = \(a^2\)- ab + \(b^2\)+ 3ab ( \(a^2\)+ 2ab + \(b^2\))

Với a + b = 1

M= \(a^2\)- ab + \(b^2\)+ 3ab\(\left(a+b\right)^2\)

M = \(a^2\)- ab + \(b^2\)+ 3ab

M = \(a^2\)\(b^2\)+ 2ab

M = \(a^2\)+ 2ab + \(b^2\)

M = \(\left(a+b\right)^2\)

M = 1

Vậy M = 1

Bình luận (0)
 Khách vãng lai đã xóa
CA
Xem chi tiết
PH
24 tháng 11 2018 lúc 19:53

       \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Rightarrow\left(2x^2+4xy+2y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

Khi đó: \(A=\left(-1+1\right)^{2014}+\left(-1+2\right)^{2015}+\left(1-1\right)^{2016}\)

\(=0+1+0=1\)

Bình luận (0)
VL
22 tháng 12 2018 lúc 19:42

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

Bình luận (0)
H24
23 tháng 12 2018 lúc 19:59

câu 2: Ta có:

\(pt\Leftrightarrow a^2+b^2+c^2-ab-ac-bc=0\Leftrightarrow2a^2+2b^2+2c^2-2ac-2ab-2bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow a=b=c}\)

Bình luận (0)
JY
Xem chi tiết
PN
14 tháng 10 2017 lúc 21:06

Ta có:

M = a³ + b³ + 3ab(a² + b²) + 6a²b²(a + b) 

= (a+b)(a² - ab + b²) + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

= (a+b) [(a +b)² - 3ab] + 3ab[(a+b)² - 2ab] + 6a²b²(a +b ) 

_______thay a + b = 1 __________________: 
M = 1.(1 - 3ab) + 3ab(1 - 2ab) + 6a²b² 

M = 1 - 3ab + 3ab - 6a²b² + 6a² b² = 1

Bình luận (0)
VL
22 tháng 12 2018 lúc 19:43

M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)

= (a + b)(a2 - ab + b2) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= (a + b)((a + b)2 - 3ab) + 3ab((a + b)2 - 2ab) + 6a2b2(a + b)

= 1 - 3ab + 3ab(1 - 2ab) + 6a2b2

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2 = 1

Bình luận (0)