\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
=1
\(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
=1
Cho a+b=1
Tính \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
cho a+b=1
tính \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
Cho \(a+b=1\). Tính \(M=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
Cho a+b=1. Tính giá trị của các biểu thức sau:
M= \(a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
Vì \(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)
Lại có \(a+b=1\)
\(\Rightarrow\left(a+b\right)^3=1\)
\(\Rightarrow a^3+b^3=1-3ab\left(a+b\right)\)
\(=1-3ab\left(2\right)\)
Thay (1) và (2) vào M ta được:
\(M=1-3ab+3ab\left(1-2ab\right)+6a^2b^2\left(a+b\right)\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2\)
\(=1\)
Vậy ...
Cho a + b = 1. Tính giá trị của các biểu thức sau :
\(M=a^3+b^3+3ab\cdot\left(a^2+b^2\right)+6a^2b^2\cdot\left(a+b\right)\)
Tính:
a, \(N=8a^3-27b^3\)biết ab=12 và 2a-3b=5
b, \(K=a^3+b^3+6a^2b^2\left(a+b\right)+3ab\left(a^2+b^2\right)\)biết a+b=1
c, \(P=\left(\dfrac{x}{4}\right)^3+\left(\dfrac{y}{2}\right)^3\)biết xy=4 và x+2y=8
a) Cho \(x-y=1\), tính \(A=x^3-y^3-3xy\)
b) Cho \(x-y=2\), tính \(B=2\left(x^3-y^3\right)-3\left(x+y\right)^2\)
c) Cho \(a+b=1\), tính \(C=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2\left(a+b\right)\)
Bài1:Cho a+b=1.Tính \(A=a^3+b^3+3ab\left(a^2+b^2\right)+6a^2b^2.\left(a+b\right)\)
Bài 2: Cho a,b,c thuộc R t/m: ab+bc+ca=abc và a+b+c=1.CMR:(a-1)(b-1)(c-1)=0
Bài 3: Cho x-y=12.Tính A=x^3-y^3-36xy
Bài 4: Rút gọn A=(ab+bc+ca)(1/a+1/b+1/c)-abc(1/a^2 + 1/b^2 +1/c^2)