M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
M = (a + b).(a2 - ab + b2) + 3ab[a2 + b2 + 2ab(a + b)]
M = a2 - ab + b2 + 3ab(a2 + b2 + 2ab)
M = a2 - ab + b2 + 3ab(a + b)2
M = a2 - ab + b2 + 3ab
M = a2 + 2ab + b2
M = (a + b)2 = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
M = (a + b).(a2 - ab + b2) + 3ab[a2 + b2 + 2ab(a + b)]
M = a2 - ab + b2 + 3ab(a2 + b2 + 2ab)
M = a2 - ab + b2 + 3ab(a + b)2
M = a2 - ab + b2 + 3ab
M = a2 + 2ab + b2
M = (a + b)2 = 1
a, Cho \(f\left(x\right)=ax^2+bx+c\). Biết \(a+c=2^{2006}\) và \(b=2^{2006}\). Tính giá trị biểu thức \(A=f\left(-1\right)+f\left(1\right)\) và \(B=f\left(1\right)-f\left(-1\right)\)
b, Cho a,b,c là các số nguyên dương thỏa mãn: \(\left\{{}\begin{matrix}a+b+c+20\\16+2b+c=80\end{matrix}\right.\). Hãy tính giá trị của M=25a-4b-2007c
a) Cho a,b,c,d >0 và dãy tỉ số :\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}\)
Tính :P=\(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)}\)
b)Tìm giá trị nguyên dương của x và y sao cho:\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)
hộ tui vs các chế
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau :
a) \(A=\left|x-2017\right|+\left|x-2018\right|\)
b) \(B=\dfrac{x^2+12}{x^2+4}\)
1. Cho biểu thức:\(A=2x^2-5x-5\)
Tính giá trị của biểu thức \(x=-2,x=\dfrac{1}{2}\)
2.Cho biểu thức:\(D=\left(x^2-1\right).\left(x^2-2\right).\left(x^2-3\right).....\left(x^2-2015\right)\)
Tính giá trị biểu thức D tại \(x=\left(x^2+2010\right).\left(x-10\right)=0\)
3.Tìm giá trị nhỏ nhất của biểu thức:
\(a.A=\left(x-3\right)^2+9\)
b.\(\left(x-1\right)+\left(y+2\right)^2+10\)
c.\(\text{|}x-1\text{|}+\left(2y-1\right)^4+1\)
4.Tính giá trị lớn nhất của biểu thức:
a.\(P=-2.\left(x-3\right)^2+5\)
b.\(Q=\dfrac{5}{\left(x-14\right)^2+21}\)
5.Tìm x thuộc Z để \(A=\dfrac{x-5}{x-3}\) thuộc Z
Bài 1: Cho biểu thức A= \(\left(x^2-1\right).\left(x^2-9\right)\). Tìm số nguyên x để biểu thức A có giá trị âm.
Cho 3 số a,b,c thỏa mãn: \(\dfrac{a}{2017}=\dfrac{b}{2018}=\dfrac{c}{2019}\). Tính giá trị của biểu thức:
\(M=4\left(a-b\right)\left(b-c\right)-\left(c-a\right)^2\)
Cho hai biểu thức:
\(P\left(x\right)=3x^2-5x-4x^4-x^3-x^2+7\)
\(Q\left(x\right)=-3x^3-4x^4+8+2x^3-2x^2-x\)
a) Tìm biểu thức H(x) sao cho \(P\left(x\right)-H\left(x\right)=Q\left(x\right)\)
b) Tìm các giá trị của x để H(x) có giá trị bằng 7
Cho hai biểu thức:
\(P\left(x\right)=3x^2-5x-4x^4-x^3-x^2+7\)
\(Q\left(x\right)=-3x^3-4x^4+8+2x^3-2x^2-x\)
a) Tìm biểu thức H(x) sao cho \(P\left(x\right)-H\left(x\right)=Q\left(x\right)\)
b) Tìm các giá trị của x để H(x) có giá trị bằng 7
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)