Chứng tỏ rằng 1+5+52+...+5404 chia hết cho 31
HELP ME ^.^
Chứng tỏ rằng 1+ 5 + 52 + 53 +... + 5402 + 5403 + 5404 chia hết cho 31
Đặt \(A=1+5+5^2+5^3+...+5^{402}+5^{403}+5^{404}\)
\(\Rightarrow A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{399}+5^{400}+5^{401}\right)+\left(5^{402}+5^{403}+5^{404}\right)\)
\(\Rightarrow A=31.1+31.5^3+...+31.5^{402}\)
\(\Rightarrow A=31\left(1+5^3+5^6+...+5^{402}\right)\)
\(\Rightarrow A⋮31\left(đpcm\right)\)
Câu 1 : 1+52+53+54+...+5404:31
Câu 2 : a ) Chứng minh : Trong 3 Số tự nhiên liên tiếp có một số chia hết cho 3
b ) Chứng minh : Trong 5 Số tự nhiên liên tiếp có một số chia hết cho 5
Câu 1 : 1+52+53+54+...+5404:31
Câu 2 : a ) Chứng minh : Trong 3 Số tự nhiên liên tiếp có một số chia hết cho 3
b ) Chứng minh : Trong 5 Số tự nhiên liên tiếp có một số chia hết cho 5
Câu 1 : 1+52+53+54+...+5404:31
Câu 2 : a ) Chứng minh : Trong 3 Số tự nhiên liên tiếp có một số chia hết cho 3
b ) Chứng minh : Trong 5 Số tự nhiên liên tiếp có một số chia hết cho 5
Chứng tỏ rằng:
1+5+52+53+......+5402+5403+4404
chia hết cho 31?
\(\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{402}+5^{403}+5^{404}\right)\\ =31+5^3.\left(1+5+5^2\right)+...+5^{402}.\left(1+5+5^2\right)\\ =31+5^3.31+...+5^{402}.31\\ =31.\left(1+5^3+...+5^{402}\right)⋮31\left(DPCM\right)\)
Cho B= 5+52+53+...589 +590. Chứng tỏ rằng B chia hết cho 31
\(B=5+5^2+5^3+...+5^{88}+5^{89}+5^{90}\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{88}+5^{89}+5^{90}\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{88}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{88}\right)⋮31\)
Chứng tỏ rằng B=1+5+52+...+57+58 chia hết cho 31.giúp em để em Ôn thi ạ
\(B=\left(1+5+5^2\right)+...+5^6\left(1+5+5^2\right)=31\left(1+...+5^6\right)⋮31\)
a,(3x - 1 )3= 125
Chứng tỏ rằng A= 1+5 +52 + 53+...+597+598 chia hết cho 31
Help me
(3x - 1)3 = 125
(3x - 1)3 = 53
=>3x - 1 = 5
3x = 5 + 1
3x = 6
x = 6 : 3
x = 2
A = 1+5+52+53+...+597+598
A = (1 + 5 + 52) + (53 + 54 + 55) + ... + (596 + 597 + 598)
A = 1(1 + 5 + 52) + 53(1 + 5 + 52) + ... + 596(1 + 5 + 52)
A = 1.31 + 53.31 + ... + 596.31
A = 31(1 + 53 + ... + 596)
Vì 31(1 + 53 + ... + 596) \(⋮\)nên A \(⋮\)31
Vậy A \(⋮\)31
a, \(\left(3x-1\right)^3=125\Leftrightarrow\left(3x-1\right)^3=5^3\)
\(\Rightarrow3x-1=5\Rightarrow3x=5+1\Rightarrow3x=6\Rightarrow x=6\div3=2\)
Vậy x = 2
b, Xét dãy số mũ : 0;1;2;3;...;97;98
Số số hạng của dãy số trên là :
\(\left(98-0\right)\div1+1=99\) ( số )
Ta được số nhóm là :
\(99\div3=33\) ( nhóm )
Ta có : \(A=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\) (33 nhóm )
\(A=\left(1+5+5^2\right)+5^3\left(1+5+5^2\right)+...+5^{96}\left(1+5+5^2\right)\)
\(A=1.31+5^3.31+...+5^{96}.31=\left(1+5^3+...+5^{96}\right).31\)
Mà : \(31⋮31;1+5^3+...+5^{96}\in N\Rightarrow A⋮31\) (đpcm)
\(\left(3x-1\right)^3=125\)
\(\Rightarrow3x-1=5\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
Ta có: \(A=1+5+5^2+...+5^{97}+5^{98}\)
\(\Rightarrow A=\left(1+5+5^2\right)+...+\left(5^{96}+5^{97}+5^{98}\right)\)
\(\Rightarrow A=31+...+5^{96}\left(1+5+5^2\right)\)
\(\Rightarrow A=31+...+5^{96}.31\)
\(\Rightarrow A=\left(1+...+5^{96}\right).31⋮31\)
Vậy\(A⋮31\)
Chứng tỏ rằng:
a, 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b, 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
a, Ta có:
2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
= 2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100
= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4
= 2 . 31 + 2 6 . 31 + . . . + 2 96 . 31
= 2 + 2 6 + . . . + 2 96 . 31 chia hết cho 31
b, Ta có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5
= 5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6
= ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6 chia hết cho 6
Ta lại có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150 (có đúng 25 nhóm)
= [ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... + [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]
= [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... + [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]
= ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... + ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )
= ( 5 + 5 2 + 5 3 ) . 126 + ( 5 7 + 5 8 + 5 9 ) . 126 + ... + ( 5 145 + 5 146 + 5 147 ) . 126
= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... + ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.
Vậy 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
=1872643+8712648-127649817
=9873264+98293:8726