Những câu hỏi liên quan
TN
Xem chi tiết
H24
Xem chi tiết
H24
6 tháng 8 2023 lúc 11:58

Có : a + b + c = 0

=> (a + b)5 = (-c)5

      a5 + 5a4b + 10a3b+ 10a2b3 + 5ab4 + b5 = -c5

      a5 + b5 + c5 = -5a4b - 10a3b2 - 10a2b3 - 5ab4

       a5 + b5 + c5 = -5ab(a3 + 2a2b + 2ab2 + b3)

      a5 + b5 + c= -5ab[(a3 + b3) + (2a2b + 2ab2)]

      a5 + b5 + c5 = -5ab[(a + b)(a2 - ab + b2) + 2ab(a + b)]

      a5 + b5 + c5 = -5ab(a + b)(a2 + b2 + ab)  

      a5 + b5 + c5 = 5abc(a2 + b2 + ab)   (do a+b+c=0=> a+b=-c)

      2(a5 + b5 + c5) = 5abc(2a2 + 2b2 + 2ab)

      2(a5 + b5 + c5) = 5abc[a2 + b2 +(a2 + 2ab + b2)]

      2(a5 + b5 + c5) = 5abc[a2 + b2 + (a + b)2]

      2(a5 + b5 + c5) = 5abc(a2 + b2 + c2)    (do a+b=-c=> (a +b )2 = c2

    \(\Leftrightarrow\) \(a^5+b^5+c^5=\dfrac{5}{2}abc\left(a^2+b^2+c^2\right)\)

Vậy...

Bình luận (0)
H24
Xem chi tiết
NL
14 tháng 1 2024 lúc 14:45

Ta có:

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}\ge\dfrac{4}{a+2b+c}\ge\dfrac{4}{\dfrac{a^2+1}{2}+b^2+1+\dfrac{c^2+1}{2}}=\dfrac{8}{b^2+7}\)

Tương tự

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}\ge\dfrac{8}{a^2+7}\)

\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{8}{c^2+7}\)

Cộng vế:

\(2\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\right)\ge\dfrac{8}{a^2+7}+\dfrac{8}{b^2+7}+\dfrac{8}{c^2+7}\)

\(\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\ge\dfrac{4}{a^2+7}+\dfrac{4}{b^2+7}+\dfrac{4}{c^2+7}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Bình luận (0)
NL
Xem chi tiết
NT
4 tháng 10 2021 lúc 22:49

\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)

\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)

\(=-27-18=-45\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
NT
5 tháng 8 2023 lúc 23:03

b: (3x-2)^5+(5-x)^5+(-2x-3)^5=0

Đặt a=3x-2; b=-2x-3

Pt sẽ trở thành:

a^5+b^5-(a+b)^5=0

=>a^5+b^5-(a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5)=0

=>-5a^4b-10a^3b^2-10a^2b^3-5ab^4=0

=>-5a^4b-5ab^4-10a^3b^2-10a^2b^3=0

=>-5ab(a^3+b^3)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2)-10a^2b^2(a+b)=0

=>-5ab(a+b)(a^2-ab+b^2+2ab)=0

=>-5ab(a+b)(a^2+b^2+ab)=0

=>ab(a+b)=0

=>(3x-2)(-2x-3)(5-x)=0

=>\(x\in\left\{\dfrac{2}{3};-\dfrac{3}{2};5\right\}\)

Bình luận (1)
VK
Xem chi tiết
EC
3 tháng 7 2019 lúc 21:50

a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)

         = a2 - 2a - a + 2 + a2 + 4a - 3a - 12  - 2a2 - 5a + 34

       = (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)

        =  -7a + 24

=> VT = VP

=> đpcm

b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)

         = (a3 - b3) - (a3 + b3)

         = a3 - b3 - a3 - b3

           = -2b

=> VT = VP

=> Đpcm

Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)

Bình luận (0)
NT
Xem chi tiết
NL
10 tháng 8 2021 lúc 19:44

Đề bài sai

Phản ví dụ:

\(a=-1;b=1\) thì \(\left(a^2+b^2\right)\left(a^4+b^4\right)=4\)

Trong khi \(\left(a+b\right)\left(a^5+b^5\right)=0\)

\(4< 0\) là sai

BĐT này chỉ đúng với a;b là các số thực không âm (hoặc dương), hoặc cùng dấu

Bình luận (0)
H24
Xem chi tiết
TH
23 tháng 6 2023 lúc 10:53

loading...

Bình luận (0)
PB
Xem chi tiết
CT
12 tháng 11 2017 lúc 4:25

a) Rút gọn M = 279. Với m = 2017 giá trị của M = 279.

b) N = 8 a 3   -   27 b 3   =   ( 2 a ) 3   -   ( 3 b ) 3 = ( 2 a   -   3 b ) 3  + 3.2a.3b.(2a - 3b)

Thay a.b = 12;2a - 3b = 5 ta thu được N - 1205.

c) Cách 1: Từ a + b = 1 Þ a = 1 - b thế vào K.

Thực hiện rút gọn K, ta có kết quả K = 1.

Cách 2: Tìm cách đưa biêu thức về dạng a + b.

a 3   +   b 3   =   ( a   +   b ) 3  – 3ab(a + b) = 1 - 3ab;

6 a 2 b 2 (a + b) = 6 a 2 b 2  kết hợp với 3ab( a 2 + b 2 ) bằng cách đặt 3ab làm nhân tử chung ta được 3ab( a 2  + 2ab + b 2 ) = 3ab.

Thực hiện rút gọn K = 1.

Bình luận (0)