Tìm x
3x+1 - 22x+1 -12x/2 = 0
1.Giai phương trình sau:
a,22x-13=x-6
b,(x-7)(2x+10)=0
c,12x+9/x-14=7
d,x+2/4+3x-4/6=x-14/24
Bài 1:
a) Ta có: 22x-13=x-6
\(\Leftrightarrow22x-13-x+6=0\)
\(\Leftrightarrow21x-7=0\)
\(\Leftrightarrow21x=7\)
hay \(x=\frac{1}{3}\)
Vậy: \(x=\frac{1}{3}\)
b) Ta có: (x-7)(2x+10)=0
\(\Leftrightarrow\left(x-7\right)\cdot2\cdot\left(x+5\right)=0\)
mà \(2\ne0\)
nên \(\left[{}\begin{matrix}x-7=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;7\right\}\)
c) ĐKXĐ: \(x\ne14\)
Ta có: \(\frac{12x+9}{x-14}=7\)
\(\Leftrightarrow12x+9=7\left(x-14\right)\)
\(\Leftrightarrow12x+9=7x-98\)
\(\Leftrightarrow12x+9-7x+98=0\)
\(\Leftrightarrow5x+107=0\)
\(\Leftrightarrow5x=-107\)
hay \(x=\frac{-107}{5}\)(tm)
Vậy: \(x=\frac{-107}{5}\)
d) Ta có: \(\frac{x+2}{4}+\frac{3x-4}{6}=\frac{x-14}{24}\)
\(\Leftrightarrow\frac{6\left(x+2\right)}{24}+\frac{4\left(3x-4\right)}{24}=\frac{x-14}{24}\)
Suy ra: \(6\left(x+2\right)+4\left(3x-4\right)=x-14\)
\(\Leftrightarrow6x+12+12x-16-x+14=0\)
\(\Leftrightarrow17x+10=0\)
\(\Leftrightarrow17x=-10\)
hay \(x=\frac{-10}{17}\)
Vậy: \(x=\frac{-10}{17}\)
Phan tich đa thức thành nhân tử:
a, P(x)=(48x2+8x-1) (3x2+5x+2)-4
b, Q(x)=(12x-1) (6x-1) (4x-1) (3x-1) -330|
c, M(x)=4 (x2+11x+30) (x2+22x+120)-3x2
Tìm giá trị lớn nhất Pmax của biểu thức p = 9 . 2 x + 2 - x - 2 2 x + 2 - x + 2 + 9 . 2 x - 1 2 x + 1 với x thuộc [-1;1]
A. -1
B. 5
C. 3
D. 1
PTDT thành nhân tử
1) (48x2+8x-1)(3x2+5x-2)-4
2) (12x-1)(6x-1)(4x-1)(3x-1)-330
3) 4(x2+11x+30)(x2+22x+120)
4) x(x+4)(x+6)(x+10)+128
1. 9x^2 + 12x + 5 = 11
2. 6x^2 + 16x + 12 = 2x^2
3. 16x^2 + 22x + 11 = 6x + 5
4. 12x^2 + 20x + 10 = 3x^2 - 4x
giúp mình với ạ
chuyển vế sang r phân tích thành nhân tử, có thể dùng máy tính bỏ túi nhé bạn
câu 1: 9\(x^2\) + 12\(x\) + 5 =11
(3\(x\))2 + 2.3.\(x\) .2 + 22 + 1 = 11
(3\(x\) + 2)2 = 11 - 1
(3\(x\) + 2)2 = 10
\(\left[{}\begin{matrix}3x+2=\sqrt{10}\\3x+2=-\sqrt{10}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=\sqrt{10}-2\\3x=-\sqrt{10}-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{10}-2}{3}\\x=\dfrac{-\sqrt{10}-2}{3}\end{matrix}\right.\)
Vậy S = {\(\dfrac{-\sqrt{10}-2}{3}\); \(\dfrac{\sqrt{10}-2}{3}\)}
Câu 2: 6\(x^2\) + 16\(x\) + 12 = 2\(x^2\)
6\(x^2\) + 16\(x\) + 12 - 2\(x^2\) = 0
4\(x^2\) + 16\(x\) + 12 = 0
(2\(x\))2 + 2.2.\(x\).4 + 16 - 4 = 0
(2\(x\) + 4)2 = 4
\(\left[{}\begin{matrix}2x+4=2\\2x+4=-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}2x=-2\\2x=-6\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)
S = { -3; -1}
3, 16\(x^2\) + 22\(x\) + 11 = 6\(x\) + 5
16\(x^2\) + 22\(x\) - 6\(x\) + 11 - 5 = 0
16\(x^2\) + 16\(x\) + 6 = 0
(4\(x\))2 + 2.4.\(x\) . 2 + 22 + 2 = 0
(4\(x\) + 2)2 + 2 = 0 (1)
Vì (4\(x\)+ 2)2 ≥ 0 ∀ ⇒ (4\(x\) + 2)2 + 2 > 0 ∀ \(x\) vậy (1) Vô nghiệm
S = \(\varnothing\)
Câu 4. 12\(x^2\) + 20\(x\) + 10 = 3\(x^2\) - 4\(x\)
12\(x^2\) + 20\(x\) + 10 - 3\(x^2\) + 4\(x\) = 0
9\(x^2\) + 24\(x\) + 10 = 0
(3\(x\))2 + 2.3.\(x\).4 + 16 - 6 = 0
(3\(x\) + 4)2 = 6
\(\left[{}\begin{matrix}3x+4=\sqrt{6}\\3x+4=-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=-4+\sqrt{6}\\3x=-4-\sqrt{6}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}-4}{3}\\x=-\dfrac{\sqrt{6}+4}{3}\end{matrix}\right.\)
S = {\(\dfrac{-\sqrt{6}-4}{3}\); \(\dfrac{\sqrt{6}-4}{3}\)}
a) 2(x-1)2+(x+3)2=3(x-2)(x+1)
b) (x-1)2+(x-2)2=2(x+4)2-(22x+27)
c) x3-5x2+12x-5=0
d) (2x-1)2+(x+3)2-5(x+7) (x-7)=0
Bài 1 Tìm x
a, x^2-5x+1=0
b, 3x^2-12x-1=0
Bài 2 Tìm GTNN
a, A=1/4x^2-x+1
b, B=3x^2-4x-2
Bài 1:
a) \(x^2-5x+1=0\)
\(\Leftrightarrow\left(x^2-5x+\frac{25}{4}\right)-\frac{21}{4}=0\)
\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2-\frac{\left(\sqrt{21}\right)^2}{2^2}=0\)
\(\Leftrightarrow\left(x-\frac{5+\sqrt{21}}{2}\right)\left(x+\frac{\sqrt{21}-5}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5+\sqrt{21}}{2}=0\\x+\frac{\sqrt{21}-5}{2}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{21}}{2}\\x=\frac{5-\sqrt{21}}{2}\end{cases}}\)
b) \(3x^2-12x-1=0\)
\(\Leftrightarrow3\left(x^2-4x+4\right)-13=0\)
\(\Leftrightarrow\left(x-2\right)^2-\left(\sqrt{\frac{13}{3}}\right)^2=0\)
\(\Leftrightarrow\left(x-2-\sqrt{\frac{13}{3}}\right)\left(x-2+\sqrt{\frac{13}{3}}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2+\sqrt{\frac{13}{3}}\\x=2-\sqrt{\frac{13}{3}}\end{cases}}\)
Bài 2:
a) \(A=\frac{1}{4}x^2-x+1=\left(\frac{1}{2}x-1\right)^2\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(\frac{1}{2}x-1\right)^2=0\Rightarrow\frac{1}{2}x=1\Rightarrow x=2\)
Vậy Min(A) = 0 khi x = 2
b) \(B=3x^2-4x-2=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)-\frac{10}{3}=3\left(x-\frac{2}{3}\right)^2-\frac{10}{3}\ge-\frac{10}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(3\left(x-\frac{2}{3}\right)^2=0\Rightarrow x=\frac{2}{3}\)
Vậy \(Min\left(B\right)=-\frac{10}{3}\Leftrightarrow x=\frac{2}{3}\)
tìm x biết
1. 5x( 1 - 2x ) - 3x( x + 18 ) = 0
2. (12x - 5)* (4x - 1) + ( 3x - 7) * ( 1 - 16x ) = 81
#)Giải :
Câu 1 :
5x(1 - 2x ) - 3x ( x+18) = 0
<=> 5x - 10x^2 - 3x^2 - 54x = 0
<=> -13x^2 - 49x = 0
<=> x= 0 hoặc x = - 49/13
Vậy x có hai giá trị là 0 và - 49/13
#)Giải :
Câu 2 :
( 12x - 5 )( 4x - 1 ) + ( 3x - 7 )( 1 - 16x ) = 81
<=> 48x2 - 32x + 5 - 48x + 115x - 7 = 81
<=> 83x - 2 = 81
<=> x = 1
Vậy x = 1
1)5x(1 - 2x ) - 3x ( x+18) = 0
<=> 5x - 10x^2 - 3x^2 - 54x = 0
<=> -13x^2 - 49x = 0
<=> x= 0 hoặc x = -49/13
2) <=> 48x^2 - 12x - 20x + 5 + 3x - 48x^2 - 7 + 112x = 81
<=> -32x + 115x = 81 + 2
<=> 83x = 83
<=> x = 1
Tìm x, biết:
a) (2x+2)(x-1)-(x+2)(2x+1)=0;
b)(3x+1)(2x-3)-6x(x+2)=16;
c)(12x-5)(4x-1)+(3x-7)(1-16x)=81
mn ơi giúp mik vs ạ :<
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
Giải các phương trình sau:
a) 3 x − 2 x + 1 = 0 ; b) x 2 + 2 2 x − 1 = 0 ;
c) x + 3 2 x + 3 x − 5 = 0 ; d) x + 7 x + 6 2 − 4 x 3 = 0