vận dụng hằng đẳng thức so sánh
20162017 . 20162019 với 20162018^2
giúp mk vs
So sánh 2 số sau bằng cách vận dụng hằng đẳng thức:
A=4(32+1)(34+1).....(364+1) vs B=3128-1
\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(.........\)
\(=\frac{1}{2}\left(3^{168}-1\right)\)\(< \)\(3^{168}-1\)
\(\Rightarrow\)\(A< B\)
Tại sao 4 lại trở thành 2 vậy. Giải thích giúp mình nhé.
1. So sánh 2 số bằng cách vận dụng hằng đẳng thức:
a)A=1999.2001 Vs B=20002 b)A=216 vs B=(2+1)(22+1)(24+1)(28+1)
Các bn giải chi tiết nhé!! mk cần gấp!
a, \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2=B\)
Vậy A<B
b, \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=A\)
Vậy A>B
Giúp mình vs ạ mai mình học rùi
So sánh 2 số sau bằng cách vận dụng hằng đẳng thức :
a) A = 1999.2001 và B = 20002
b) A = 2^16 và B = (2 + 1)(2^2 + 1)(2^4 + 1)(2^8 + 1)
c) A = 2011.2013 và B = 2012^2
d) A = 4(3^2 + 1)(3^4 + 1)....(3^64 + 1) và B = 3^128 - 1
CMR: 201620172×201620182+201620182 là số chính phương
Giúp mình với ạ
Tính gt biểu thức bằng cách vận dụng hằng đẳng thức: 8x^3+12x^2+6x+1 với x= 24,5
\(8x^3+12x^2+6x+1=\left(2x+1\right)^3\)
\(=\left(2\cdot24.5+1\right)^3=50^3=125000\)
Vận dụng hằng đẳng thức hãy so sánh hai số A và B
\(A=2015.2017\) và \(B=2016^2\)
\(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1\)
\(< 2016^2=B\)
Nên A<B
\(B=2016^2\)
\(\Rightarrow B=\left(2017-1\right)^2\)
\(\Rightarrow B=2017^2-4034+1=2017^2-4033\)(1)
Lại Có :
\(A=2015.2017=\left(2017-2\right).2017\)
\(\Rightarrow A=2017^2-4034\)(2)
Từ (1) và (2) => B>A
So sánh (áp dụng hằng đẳng thức)
\(A = \sqrt{1969} + \sqrt{1971} \) và \(B=2\sqrt{1970} \)
\(A^2=3940+2\cdot\sqrt{1970^2-1}\)
\(B^2=3940+2\cdot\sqrt{1970^2}\)
mà \(1970^2-1< 1970^2\)
nên A<B
so sánh hai số bằng cách vận dụng hằng đẳng thức
A = 4(32+1) (34+1).....(364+1) và B = 3128 -1
\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\frac{1}{2}\left(3^{128}-1\right)< B\)
\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)
\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)
\(\Rightarrow A< B\)
so sánh hai số bằng cách vận dụng hằng đẳng thức:
A=4(32+1)(34+1)...(364+1) và B=3128-1