Những câu hỏi liên quan
BN
Xem chi tiết
KT
14 tháng 7 2018 lúc 20:04

\(A=4\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

                          \(.........\)

\(=\frac{1}{2}\left(3^{168}-1\right)\)\(< \)\(3^{168}-1\)

\(\Rightarrow\)\(A< B\)

Bình luận (0)
HT
17 tháng 7 2018 lúc 16:29

Tại sao 4 lại trở thành 2 vậy. Giải thích giúp mình nhé.

Bình luận (0)
BN
Xem chi tiết
ST
12 tháng 7 2018 lúc 14:06

a, \(A=1999.2001=\left(2000-1\right)\left(2000+1\right)=2000^2-1< 2000^2=B\)

Vậy A<B

b, \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)=2^{16}-1< 2^{16}=A\)

Vậy A>B

Bình luận (0)
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
NT
14 tháng 8 2021 lúc 23:58

\(8x^3+12x^2+6x+1=\left(2x+1\right)^3\)

\(=\left(2\cdot24.5+1\right)^3=50^3=125000\)

Bình luận (1)
NC
Xem chi tiết
NP
19 tháng 6 2018 lúc 10:11

\(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1\)

\(< 2016^2=B\)

Nên A<B

Bình luận (0)
PD
19 tháng 6 2018 lúc 10:16

\(B=2016^2\)

\(\Rightarrow B=\left(2017-1\right)^2\)

\(\Rightarrow B=2017^2-4034+1=2017^2-4033\)(1)

Lại Có :

\(A=2015.2017=\left(2017-2\right).2017\)

\(\Rightarrow A=2017^2-4034\)(2)

Từ (1) và (2) =>  B>A

Bình luận (0)
PT
Xem chi tiết
NT
27 tháng 9 2021 lúc 21:06

\(A^2=3940+2\cdot\sqrt{1970^2-1}\)

\(B^2=3940+2\cdot\sqrt{1970^2}\)

mà \(1970^2-1< 1970^2\)

nên A<B

Bình luận (1)
BH
Xem chi tiết
PH
10 tháng 10 2018 lúc 20:38

\(A=4\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\frac{1}{2}\left(3^{128}-1\right)< B\)

Bình luận (0)
NA
10 tháng 10 2018 lúc 20:43

\(A=4\left(3^2+1\right)\left(3^4+1\right)....\left(3^{64}+1\right)\)

\(\Rightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right).....\left(3^{64}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right).....\left(3^{64}+1\right)=\left(3^{64}-1\right)\left(3^{64}+1\right)=3^{128}-1=B\)

\(\Rightarrow A< B\)

Bình luận (0)
NH
Xem chi tiết
NT
18 tháng 7 2021 lúc 15:08

undefined

Bình luận (1)