Những câu hỏi liên quan
MM
Xem chi tiết
NH
Xem chi tiết
LD
Xem chi tiết
NH
Xem chi tiết
DK
Xem chi tiết
DH
11 tháng 7 2021 lúc 15:39

undefined

Bình luận (0)
H24
11 tháng 7 2021 lúc 15:40

Điều phải chứng minh tương đương với

\(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}\ge0\\ \Leftrightarrow\left(a+b-2\sqrt{ab}\right)+\left(b+c-2\sqrt{bc}\right)+\left(c+a-2\sqrt{ca}\right)\ge0\\ \Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

(luôn đúng với mọi a,b,c không âm)

Dấu = xảy ra khi a=b=c >=0 

Bình luận (0)
NT
12 tháng 7 2021 lúc 0:12

Ta có: \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

\(\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(a-2\sqrt{ac}+c\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2\ge0\)(luôn đúng)

Bình luận (0)
NV
Xem chi tiết
TA
Xem chi tiết
ND
19 tháng 7 2020 lúc 20:48

cho a,b,c là 3 số thực thỏa mãn a+b+c= căn a + căn b +căn c=2 chứng minh rằng : căn a/(1+a) + căn b/(1+b) + căn c /( 1+ c ) = 2/ căn (1+a)(1+b)(1+c) Khó quá mọi người oi

Bình luận (0)
H24
Xem chi tiết
CN
Xem chi tiết
NL
13 tháng 1 2021 lúc 21:08

Tìm điều gì của M bạn?

Bình luận (0)
TH
13 tháng 1 2021 lúc 22:32

Mình nghĩ là tìm Min, Max \(M=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\).

Tìm Min: Ta có \(M^2\ge a+b+b+c+c+a=2\left(a+b+c\right)\ge2\sqrt{a^2+b^2+c^2}=2\).

Do đó \(M\geq\sqrt{2}\).Đẳng thức xảy ra khi a = b = 0; c = 1.

Tìm Max: Ta có \(M\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}=\sqrt[4]{108}\).

Bình luận (2)