Tìm GTNN của P=\(\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)
Mong các bạn giải chi tiết 1 chút
cảm ơn
Cho \(P=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\) với \(x\ge0,x\ne1\)
a) Rút gọn P
b) Tìm GTNN của P
CÁC BẠN GIẢI CHI TIẾT GIÚP MÌNH, MÌNH CẢM ƠN Ạ!!!
a) \(P=\dfrac{x\sqrt{x}+26\sqrt{x}-19}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{2x+6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{x\sqrt{x}+24\sqrt{x}-3x-22}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(x+25\sqrt{x}+22\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{x+25\sqrt{x}+22}{\sqrt{x}+3}\)
b) chả biết nữa, nghĩ ra thì gửi cho
96neko, vì tớ ko biết làm nên chờ ở đây nhá: Câu hỏi của Cold Wind - Toán lớp 9 | Học trực tuyến
Xin cảm ơn!
Cho các biểu thức sau (giải chi tiết)
A = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\) và B = \(\dfrac{2x+3\sqrt{x}+9}{x-9}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức B
b) Cho \(P=\dfrac{A}{B}\). Tìm GTNN của P
a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)
b: \P=A:B
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)
Dấu = xảy ra khi x=0
\(\dfrac {\sqrt {x+1} \sqrt{2x-1}).(\sqrt{x+1}-2)} {x-1} \leq 0\)
Mình cần chi tiết các bước tính để ra được bất phương trình tương đương này. Nhờ các bạn giúp mình nhé. Mình cảm ơn
\(\Leftrightarrow \dfrac {(x+1-2x+1)(x+1-4)} {x-1} \leq 0\)
Giải chi tiết giúp mình câu b nha. Cám ơn các bn nhìu
Cho \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right)\); \(B=\dfrac{\sqrt{x}+1}{x-1}\) với x>0, \(x\ne1\)
a) Tính P=A:B
b) Tìm giá trị của m để tồn tại x sao cho \(P\sqrt{x}=m+\sqrt{x}\)
a) \(P=\dfrac{A}{B}=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\)
b) \(P\sqrt{x}=m+\sqrt{x}\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}}.\sqrt{x}=m+\sqrt[]{x}\)
\(\Leftrightarrow x-1=m+\sqrt{x}\)
\(\Leftrightarrow m=x-\sqrt{x}-1\)
Tìm x: \(\dfrac{5}{9}+\dfrac{4}{9}:x=\dfrac{1}{3}\)
CÁC BẠN GIẢI CHI TIẾT BÀI NÀY GIÚP MÌNH NHÉ! CẢM ƠN CÁC BẠN RẤT NHIỀU! 🤧🙏💖
`5/9+4/9:x=1/3`
`=>4/9:x=1/3-5/9`
`=>4/9:x=3/9-5/9`
`=>4/9:x=-2/9`
`=>x=4/9:(-2/9)`
`=>x=4/9.(-9/2)`
`=>x=-4/2`
`=>x=-2`
`5/9 + 4/9 : x= 1/3`
`=> 4/9 : x= 1/3-5/9`
`=> 4/9 : x= 3/9-5/9`
`=> 4/9 : x= -2/9`
`=> x= 4/9 :(-2/9)`
`=>x= 4/9 xx (-9/2)`
`=>x= -36/18`
`=>x=-2`
5/9+4/9:x=1/3
1:x=1/3
x= 1: 1/3
x= 3
Theo tui là thế vì có mỗi phép cộng làm cộng trước xong đó tính x là ra nếu thấy cách làm thế nào thì mn bình luộn nha
Mọi người ơi, giúp em giải bài này chi tiết với ạ, em cảm ơn nhiều.
\(B=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{2}{x-\sqrt{x}}\right):\dfrac{1}{\sqrt{x}-1}\)
\(\dfrac {\sqrt {x+1} \sqrt{2x-1}} {x-1} \leq 0\)
\(\Leftrightarrow \dfrac {(x+1-2x+1)(x+1-4)} {x-1} \leq 0\)
Mình cần chi tiết cách để tính ra được bất phương trình tương đương này. Nhờ các bạn giúp mình nhé. Minh cảm ơn
tìm giá trị lớn nhất của K
\(k=\frac{5\sqrt{x}-8-5x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
các bản giải chi tiết ra giùm mình nha! khúc nào mà kiến thức vi diệu quá ấy , thì các bạn ghi lời giải thích giùm mình.
cảm ơn các bạn nhiều !!!!
tìm nghiệm nguyên duong của phương trình
\(2+\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=y\)
các bản giải chi tiết ra giùm mình nha! khúc nào mà kiến thức vi diệu quá ấy , thì các bạn ghi lời giải thích giùm mình.
cảm ơn các bạn nhiều !!!!
Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)
\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)
do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))
\(\Rightarrow x=\frac{k^2-2}{4}\)
do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)
=> ko tồn tại cặp số nguyên dương x,y tmđkđb