Những câu hỏi liên quan
VM
Xem chi tiết
EC
27 tháng 4 2017 lúc 21:23

\(A=3.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)

\(A=3.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(A=3.\left(1-\dfrac{1}{100}\right)\)

\(A=3.\dfrac{99}{100}=\dfrac{297}{100}\)

Bình luận (0)
LL
27 tháng 4 2017 lúc 21:24

Hỏi đáp Toán

Bình luận (0)
HT
27 tháng 4 2017 lúc 21:34

\(A=\dfrac{3^2}{1\times4}+\dfrac{3^2}{4\times7}+\dfrac{3^2}{7\times10}+\dfrac{3^2}{10\times13}+\dfrac{3^2}{13\times16}...+\dfrac{3^2}{97\times100}\)

\(=3\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\dfrac{3}{10\times13}+\dfrac{3}{13\times16} +...+\dfrac{3}{97\times100}\right)\)

\(=3\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)\(=3\times\left(1-\dfrac{1}{100}\right)\)

\(=3\times\dfrac{99}{100}\)

\(=\dfrac{297}{100}\)

\(=2\dfrac{97}{100}\)

Vậy \(A=2\dfrac{97}{100}\)

Bình luận (0)
VH
Xem chi tiết
MS
19 tháng 12 2017 lúc 7:29

\(l=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+....+\dfrac{1}{97.100}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{100}\right)=\dfrac{1}{3}-\dfrac{1}{300}< \dfrac{1}{3}\left(đpcm\right)\)

Bình luận (0)
NT
Xem chi tiết
NT
30 tháng 6 2017 lúc 14:17

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{94.97}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(=1-\dfrac{1}{97}\)

\(=\dfrac{96}{97}\)

Bình luận (0)
QL
15 tháng 12 2017 lúc 18:04

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\right)\)

\(=3\left(1-\dfrac{1}{97}\right)\)

\(=3.\dfrac{96}{97}=\dfrac{288}{97}\)

Bình luận (0)
TT
15 tháng 12 2017 lúc 18:25

\(=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{37.40}\right)\)

\(=\dfrac{1}{3}.\left(3-\dfrac{3}{4}+\dfrac{3}{4}-\dfrac{3}{7}+\dfrac{3}{7}-\dfrac{3}{10}+...+\dfrac{3}{37}-\dfrac{3}{40}\right)\)

= \(\dfrac{1}{3}.\left(3-\dfrac{3}{40}\right)\)

= \(\dfrac{1}{3}.\dfrac{117}{40}\)

\(=\dfrac{39}{40}\)

Bình luận (0)
HH
Xem chi tiết
H24
1 tháng 5 2021 lúc 16:14

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\\ S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\\ S=1-\dfrac{1}{46}< 1\)

Vậy S < 1 (đpcm)

Bình luận (2)
LA
Xem chi tiết
H24
27 tháng 2 2022 lúc 20:28

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{40.43}\\ =1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{40}-\dfrac{1}{43}\\ =1-\dfrac{1}{43}\\ =\dfrac{42}{43}\)

Bình luận (0)
TH
27 tháng 2 2022 lúc 20:32

e) 3/1.4 + 3/4.7 + 3/7.10+ ... + 3/40.43
= 1-1/4 + 1/4 -1/7 + 1/7-1/10+...+1/40-1/43
= 1-1/43
= 42/43

 

Bình luận (0)
KJ
Xem chi tiết
NT
15 tháng 1 2022 lúc 15:05

\(=-\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{61}-\dfrac{1}{64}\right)=-\dfrac{1}{63}\)

Bình luận (0)
TT
Xem chi tiết
H24
15 tháng 5 2018 lúc 19:01

Giải:

\(S=\dfrac{1}{1.4}-\dfrac{1}{4.7}-\dfrac{1}{7.10}-...-\dfrac{1}{97.100}\)

\(\Leftrightarrow S=-\left(-\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{97.100}\right)\)

\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{1}{1}-\dfrac{1}{100}\right)\)

\(\Leftrightarrow S=-\dfrac{1}{3}\left(-\dfrac{101}{100}\right)\)

\(\Leftrightarrow S=\dfrac{101}{300}\)

Vậy ...

Bình luận (2)
LB
Xem chi tiết
LF
12 tháng 4 2017 lúc 13:00

\(S=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{43\cdot46}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\)

\(S=1-\dfrac{1}{46}< 1\)

Bình luận (0)
NQ
25 tháng 4 2017 lúc 12:57

S= \(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+...+\dfrac{3}{40\cdot43}+\dfrac{3}{43\cdot46}\)

S= \(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{42}-\dfrac{1}{46}\)

S= \(1-\dfrac{1}{46}\)

S= \(\dfrac{45}{46}\)

\(\dfrac{45}{46}< 1\)

\(\Rightarrow S< 1\)

Vậy S < 1

Bình luận (0)
LL
Xem chi tiết
MA
3 tháng 2 2022 lúc 17:05

1.

`16 + (27 - 7.6 ) - (94 -7 - 27.99)`

`= 16+ 27 - 7.6 - 94 + 7 + 27.99`

`= 16 + 27(99 +1) - 7(6-1) - 94`

`= -78 + 27.100 - 7.5`

`= 2587`

2.

`A = 2/1.4 + 2/4.7 + 2/7.10 +...+ 2/97.100`

`A= 2(1/1.4 + 1/4.7 + 1/7.10 +...+1/97.100)`

`3A = 2 (3/1.4 + 3/4.7 + 3/7.10+...+ 3/97.100)`

`3/2 A = 1 - 1/4 + 1/4 - 1/7 +...+ 1/97 - 1/100`

`3/2A = 1 - 1/100`

`3/2 A= 99/100`

`A= 99/100 : 3/2`

`A=33/50`

Vậy `A= 33/50`

Bình luận (0)
TH
3 tháng 2 2022 lúc 17:04

1.16+(27-7.6)-(94-7-27.99)=16+27-7.6-94+7+27.99

                                           =(27+27.99)+(27+7-94)+16

                                           =27.100-60+16

                                           =2700-44=2656

2.A=\(\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)

     =\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

     =\(1-\dfrac{1}{100}=\dfrac{99}{100}\)

Bình luận (0)
TH
3 tháng 2 2022 lúc 17:06

1) \(16+\left(27-7.6\right)-\left(94-7-27.99\right)\)

=\(16+27-7.6-94+7+27.99\)

=\(\left(27+27.99\right)+\left(-7.6+7\right)+\left(16-94\right)\)

=\(27\left(1+99\right)+7\left(-6+1\right)-78\)

=\(27.100-7.5-78=2700-35-78=2587\).

2) \(A=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+...+\dfrac{2}{97.100}\)

\(A=\dfrac{2.3}{1.4.3}+\dfrac{2.3}{4.7.3}+\dfrac{2.3}{7.10.3}+...+\dfrac{2.3}{97.100.3}\)

\(A=\dfrac{2}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\right)\)

\(A=\dfrac{2}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(A=\dfrac{2}{3}.\left(\dfrac{1}{1}-\dfrac{1}{100}\right)=\dfrac{2}{3}.\dfrac{99}{100}=\dfrac{33}{50}\)

Bình luận (0)