Những câu hỏi liên quan
VD
Xem chi tiết
H24
23 tháng 8 2021 lúc 16:35

Bài 2:

a) \(\dfrac{x}{y}=\dfrac{7}{13}\Rightarrow\dfrac{x}{7}=\dfrac{y}{13}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{7}=\dfrac{y}{13}=\dfrac{x+y}{7+13}=\dfrac{60}{20}=3\)

\(\dfrac{x}{7}=3\Rightarrow x=21\\ \dfrac{y}{13}=3\Rightarrow y=39\)

b) \(\dfrac{x}{y}=\dfrac{9}{10}\Rightarrow\dfrac{x}{9}=\dfrac{y}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{9}=\dfrac{y}{10}=\dfrac{y-x}{10-9}=120\)

\(\dfrac{x}{9}=120\Rightarrow x=1080\\ \dfrac{y}{10}=120\Rightarrow y=1200\)

c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{30}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y+z}{30+10+6}=\dfrac{92}{46}=2\)

\(\dfrac{x}{30}=2\Rightarrow x=60\\ \dfrac{y}{10}=2\Rightarrow y=20\\ \dfrac{z}{6}=2\Rightarrow z=12\)

d)Áp dụng tính chất dãy tỉ số bằng nhau ta có:

 \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x-y+z}{2-3+4}=\dfrac{9}{3}=3\)

\(\dfrac{x}{2}=3\Rightarrow x=6\\ \dfrac{y}{3}=3\Rightarrow y=9\\ \dfrac{z}{4}=3\Rightarrow z=12\)

Bình luận (0)
H24
23 tháng 8 2021 lúc 16:37

Bài 1:

\(\dfrac{a+b}{b}=\dfrac{a}{b}+1\)

\(\dfrac{c+d}{d}=\dfrac{c}{d}+1\)

Mà  \(\dfrac{a}{b}=\dfrac{c}{d};1=1\Rightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

Bình luận (0)
H24
23 tháng 8 2021 lúc 16:41

undefinedundefined

Bình luận (0)
H24
Xem chi tiết
AH
15 tháng 10 2021 lúc 13:04

Câu 9 cần bs điều kiện $x,y,z\neq 0$

$\frac{x}{3}=\frac{y}{4}\Rightarrow \frac{x}{15}=\frac{y}{20}$

$\frac{y}{5}=\frac{z}{6}\Rightarrow \frac{y}{20}=\frac{z}{24}$

$\Rightarrow \frac{x}{15}=\frac{y}{20}=\frac{z}{24}$ và đặt $=t$ (đk: $t\neq 0$)

$\Rightarrow x=15t; y=20t; z=24t$

Khi đó:

$M=\frac{2.15t+3.20t+4.24t}{3.15t+4.20t+5.24t}=\frac{186t}{245t}=\frac{186}{245}$

Đáp án B.

Bình luận (3)
AH
15 tháng 10 2021 lúc 13:26

Câu 10:

Giả sử số $A$ được chia thành 3 phần $a,b,c$ sao cho

$a:b:c=\frac{2}{5}: \frac{3}{4}: \frac{1}{6}$

Đặt $a=\frac{2}{5}t; b=\frac{3}{4}t; c=\frac{1}{6}t$

$A=a+b+c=\frac{2}{5}t+\frac{3}{4}t+\frac{1}{6}t=\frac{79}{60}t$

Có:

$a^2+b^2+c^2=(\frac{2}{5}t)^2+(\frac{3}{4}t)^2+(\frac{1}{6}t)^2=24309$

$t^2=32400$

$t=\pm 180$

$\Rightarrow A=\frac{79}{60}t=\frac{79}{60}\pm 180=\pm 237$

Đáp án D.

Bình luận (0)
MN
Xem chi tiết
NN
Xem chi tiết
BF

đề thi ah bạn ?

Bình luận (0)
VD
Xem chi tiết
VD
Xem chi tiết
H24
21 tháng 9 2021 lúc 20:54

Bạn thể tự viết ra bởi vì mỗi người có những ý kiến khác nhau

Bình luận (0)
VD
Xem chi tiết
BU
Xem chi tiết
NT
13 tháng 11 2021 lúc 0:08

#include <bits/stdc++.h>

using namespace std;

double a,b,c,p,s;

int main()

{

cin>>a>>b>>c;

p=(a+b+c)/2;

s=sqrt(p*(p-a)*(p-b)*(p-c));

cout<<fixed<<setprecision(2)<<p;

return 0;

}

Bình luận (0)
BU
Xem chi tiết
NT
13 tháng 11 2021 lúc 0:09

1: 

uses crt;

var a,b,c,max,min:longint;

begin

clrscr;

readln(a,b,c);

max=a;

if max<b then max:=b;

if max<c then max:=c;

min:=a;

if min>c then min:=c;

if min>b then min:=b;

writeln(max,' ',min);

readln;

end.

Bình luận (1)
VD
Xem chi tiết
NH
25 tháng 8 2021 lúc 22:23

a) Ta có:

\(\dfrac{x}{5}=\dfrac{2x}{10}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{10}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x+y-z}{10+3-4}=\dfrac{81}{9}=9\\ \Rightarrow\left\{{}\begin{matrix}x=9\cdot5=45\\y=9\cdot3=27\\z=9\cdot4=36\end{matrix}\right.\)

Vậy x = 45; y = 27; z = 36.

b) Ta có:

\(\dfrac{x}{2}=\dfrac{y}{5}\)\(\Rightarrow\dfrac{x}{6}=\dfrac{y}{15}\)

\(\dfrac{y}{3}=\dfrac{z}{5}\)\(\Rightarrow\dfrac{y}{15}=\dfrac{z}{25}\)

suy ra, \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{25}=\dfrac{x+y+z}{6+15+25}=-\dfrac{92}{46}=-2\\ \Rightarrow\left\{{}\begin{matrix}x=-2\cdot6=-12\\y=-2\cdot15=-30\\z=-2\cdot25=-50\end{matrix}\right.\)

Vậy x = -12; y = -30; z = -50.

c) Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=4\\ \Rightarrow\left\{{}\begin{matrix}x^2=36\\y^2=64\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=6\\y=8\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=8\end{matrix}\right.\\\left\{{}\begin{matrix}x=6\\y=-8\end{matrix}\right.\\\left\{{}\begin{matrix}x=-6\\y=-8\end{matrix}\right.\end{matrix}\right.\)

Vậy (x; y) \(\in\left\{\left(6;8\right);\left(-6;8\right);\left(6;-8\right);\left(-6;-8\right)\right\}\)

d), Ta có:

\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\\ 5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\\ \Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\\ \Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\\ \Rightarrow\left\{{}\begin{matrix}x=2\cdot21=42\\y=2\cdot14=28\\z=2\cdot10=20\end{matrix}\right.\)

Vậy x = 42; y = 28; z = 20.

 

Bình luận (0)
NT
25 tháng 8 2021 lúc 23:23

a: Ta có: \(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{4}\)

nên \(\dfrac{2x}{10}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{2x}{10}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x+y-z}{10+3-4}=\dfrac{81}{9}=9\)

Do đó: x=45; y=27; z=36

b: Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}\)

nên \(\dfrac{x}{6}=\dfrac{y}{15}\left(1\right)\)

Ta có: \(\dfrac{y}{3}=\dfrac{z}{5}\)

nên \(\dfrac{y}{15}=\dfrac{z}{25}\left(2\right)\)

Từ (1), (2) suy ra \(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{25}\)

mà x+y+z=-92

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{6}=\dfrac{y}{15}=\dfrac{z}{25}=\dfrac{x+y+z}{6+15+25}=-\dfrac{92}{46}=-2\)

Do đó: x=-12; y=-30; z=-50

c: Ta có: \(\dfrac{x^2}{9}=\dfrac{y^2}{16}\)

mà \(x^2+y^2=100\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{100}{25}=4\)

Do đó: \(\left\{{}\begin{matrix}x^2=36\\y^2=64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{6;-6\right\}\\y\in\left\{8;-8\right\}\end{matrix}\right.\)

Bình luận (0)
NT
25 tháng 8 2021 lúc 23:29

d: Ta có: 2x=3y

nên \(\dfrac{x}{3}=\dfrac{y}{2}\)

hay \(\dfrac{x}{21}=\dfrac{y}{14}\left(1\right)\)

Ta có: 5y=7z

nên \(\dfrac{y}{7}=\dfrac{z}{5}\)

hay \(\dfrac{y}{14}=\dfrac{z}{15}\left(2\right)\)

Từ (1), (2) suy ra \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{15}\)

hay \(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}\)

mà 3x-7y+5z=30

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{75}=\dfrac{3x-7y+5z}{63-98+75}=\dfrac{30}{40}=\dfrac{3}{4}\)

Do đó: \(\left\{{}\begin{matrix}x=\dfrac{63}{4}\\y=\dfrac{21}{2}\\z=\dfrac{45}{4}\end{matrix}\right.\)

Bình luận (0)