\(x-\sqrt{4x-3}=2\)
Phân tích ra thừa số bằng Hằng đẳng thức và ẩn phụ nha
giải phương trình vô tỉ bằng các pp sau
1. đưa về tích
\(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
2.hằng đẳng thức
\(2x^2+2x+1=\sqrt{4x+1}\)
3.đặt ẩn phụ
\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)
1. \(\sqrt{\left(x+3\right)\left(x+7\right)}=3\sqrt{x+3}+2\sqrt{x+7}-6\)
\(\Leftrightarrow\sqrt{\left(x+3\right)\left(x+7\right)}-3\sqrt{x+3}-2\sqrt{x+7}+6=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+7}-3\right)-2\left(\sqrt{x+7}-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+7}-3\right)\left(\sqrt{x+3}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}-3=0\\\sqrt{x+3}-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+7}=3\\\sqrt{x+3}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy...
2. \(2x^2+2x+1=\sqrt{4x+1}\)
\(\Leftrightarrow2x^2+2x+1-\sqrt{4x+1}=0\)
\(\Leftrightarrow4x^2+4x+2-2\sqrt{4x+1}=0\)
\(\Leftrightarrow4x+1-2\sqrt{4x+1}+1+4x^2=0\)
\(\Leftrightarrow\left(\sqrt{4x+1}-1\right)^2+4x^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x+1}=1\\2x=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}4x+1=1\\x=0\end{matrix}\right.\)\(\Leftrightarrow x=0\)
Vậy...
3. \(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\frac{x+3}{2}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}=\frac{x+3}{2}\)
\(\Leftrightarrow\left|\sqrt{x-1}-1\right|+\sqrt{x-1}+1=\frac{x+3}{2}\)
Đặt \(\sqrt{x-1}=a\)
\(\Leftrightarrow x-1=a^2\Leftrightarrow x+3=a^2+4\)
\(pt\Leftrightarrow\left|a-1\right|+a+1=\frac{a^2+4}{2}\)
+) Xét \(a\le1\Leftrightarrow a-1\le0\Leftrightarrow1\le x\le2\)
\(pt\Leftrightarrow1-a+a+1=\frac{a^2+4}{2}\)
\(\Leftrightarrow2=\frac{a^2+4}{2}\)
\(\Leftrightarrow a^2+4=4\)
\(\Leftrightarrow a=0\)
\(\Leftrightarrow\sqrt{x-1}=0\)
\(\Leftrightarrow x=1\) ( thỏa )
+) Xét \(a\ge1\Leftrightarrow a-1\ge0\Leftrightarrow x>2\)
\(pt\Leftrightarrow a-1+a+1=\frac{a^2+3}{2}\)
\(\Leftrightarrow2a=\frac{a^2+3}{2}\)
\(\Leftrightarrow a^2+3=4a\)
\(\Leftrightarrow a^2-4a+3=0\)
\(\Leftrightarrow\left(a-1\right)\left(a-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=1\\a=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(loai\right)\\x=10\left(thoa\right)\end{matrix}\right.\)
Vậy...
Giải phương trình bậc nhất 2 ẩn bằng phương pháp đặt ẩn phụ ( dùng Hằng đẳng thức, Bất đẳng thức )
\(\hept{\begin{cases}x^2+y^2+z^2=xy+yz+zx\\x+y+z=3\end{cases}}\)
gpt bằng phương pháp đặt ẩn phụ đưa về pt đẳng cấp:
\(\sqrt{5x^2-14x+9}-\sqrt{x^2-x+1}=2\left(x^2-4x+7\right)\sqrt{x-2}\)
Phân tích đa thức thành nhân tử bằng kĩ thuật bổ sung hằng đẳng thức a)4x^2+5x-6 b)9x^2-6x-3 c)2x^2-3x-2 d)3x^2+x-2 e)3x^2+10x+3
a: =4x^2+8x-3x-6
=4x(x+2)-3(x+2)
=(x+2)(4x-3)
b: =3(3x^2-2x-1)
=3(3x^2-3x+x-1)
=3(x-1)(3x+1)
c: =2x^2-4x+x-2
=2x(x-2)+(x-2)
=(x-2)(2x+1)
d: =3x^2+3x-2x-2
=3x(x+1)-2(x+1)
=(x+1)(3x-2)
e: =3x^2+9x+x+3
=3x(x+3)+(x+3)
=(x+3)(3x+1)
a) \(4x^2+5x-6\)
\(=4x^2+8x-3x-6\)
\(=\left(4x^2+8x\right)-\left(3x+6\right)\)
\(=4x\left(x+2\right)-3\left(x+2\right)\)
\(=\left(x+2\right)\left(4x-3\right)\)
b) \(9x^2-6x-3\)
\(=3\left(3x^2-2x-1\right)\)
\(=3\left(3x^2-3x+x-1\right)\)
\(=3\left[3x\left(x-1\right)+\left(x-1\right)\right]\)
\(=3\left(x-1\right)\left(3x+1\right)\)
c) \(2x^2-3x-2\)
\(=2x^2-4x+x-2\)
\(=\left(2x^2-4x\right)+\left(x-2\right)\)
\(=2x\left(x-2\right)+\left(x-2\right)\)
\(=\left(2x+1\right)\left(x-2\right)\)
d) \(3x^2+x-2\)
\(=3x^2+3x-2x-2\)
\(=\left(3x^2+3x\right)-\left(2x+2\right)\)
\(=3x\left(x+1\right)-2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x-2\right)\)
e) \(3x^2+10x+3\)
\(=3x^2+9x+x+3\)
\(=3x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(3x+1\right)\)
Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ
(x2+4x+8)2+3x(x2+4x+8)+2x2
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\dfrac{1}{4}x^2=\left(x^2+\dfrac{11}{2}x+8\right)^2-\left(\dfrac{1}{2}x\right)^2=\left(x^2+\dfrac{11}{2}x+8-\dfrac{1}{2}x\right)\left(x^2+\dfrac{11}{2}x+8+\dfrac{1}{2}x\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)=\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)
\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)+2x\left(x^2+4x+8\right)+2x^2\)
\(=\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)\)
\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)
Giải pt sau (bằng 3 cách TẠO LŨY THỪA DƯỚI DẤU CĂN, ĐẶT ẨN PHỤ, DÙNG BĐT): \(x^2+6x-3=4x\sqrt{2x-1}\)
\(x^2+6x-3=4x\sqrt{2x-1}\left(1\right)\) ĐK: \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=a\ge0\)
\(\Rightarrow6x-3=3a^2\)
=> (1) <=> x^2 +3a^2 = 4ax
<=> x^2 -4ax +3a^2 =0
<=> x^2 -ax - 3ax + 3a^2 =0
<=> x(x-a) -3a(x-a) =0
<=> (x-a) ( x-3a ) =0
\(\Leftrightarrow\orbr{\begin{cases}x=a\\x=3a\end{cases}}\)
TH1: x=a
\(\Rightarrow x=\sqrt{2x-1}\)\(\left(x\ge0\right)\)
\(\Leftrightarrow x^2=2x-1\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
<=> x=1 (tm)
TH2: x= 3a
\(\Rightarrow x=3\sqrt{2x-1}\left(x\ge0\right)\)
\(\Leftrightarrow x^2=18x-9\)
\(\Leftrightarrow x^2-18x+9=0\)
\(\Delta=288\)
=> pt có 2 nghiệm pb \(\orbr{\begin{cases}x=\frac{18+12\sqrt{2}}{2}=9+6\sqrt{2}\left(tm\right)\\x=\frac{18-12\sqrt{2}}{2}=9-6\sqrt{2}\left(tm\right)\end{cases}}\)
Vậy ...
phân tích đa thức bằng phương pháp đặt ẩn phụ:
a) (x2 + x) + 4x2 + 4x - 12
b) (x2 + x + 1)(x2 + x + 2) - 12
a) Đề đúng: \(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=y\)
BT = \(y^2+4y-12\)
\(=\left(y+2\right)^2-4^2\)
\(=\left(y-2\right)\left(y+6\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x-6\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+3\right)\)
b) Đặt \(x^2+x+1=y\)
=> BT = \(y\left(y+1\right)-12\)
\(=y^2+y-12\)
\(=\left(y-3\right)\left(y+4\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
cảm ơn các cậu nhiều
( x2 + x )2 + 4x2 + 4x - 12 ( 2 mới phân tích được :)) )
= ( x2 + x )2 + 4( x2 + x ) - 12 (*)
Đặt x2 + x = t
(*) <=> t2 + 4t - 12
= ( t2 + 4t + 4 ) - 16
= ( t + 2 )2 - 42
= ( t + 2 - 4 )( t + 2 + 4 )
= ( t - 2 )( t + 6 )
= ( x2 + x - 2 )( x2 + x + 6 )
= ( x2 - x + 2x - 2 )( x2 + x + 6 )
= [ x( x - 1 ) + 2( x - 1 )]( x2 + x + 6 )
= ( x - 1 )( x + 2 )( x2 + x + 6 )
b) ( x2 + x + 1 )( x2 + x + 2 ) - 12
Đặt t = x2 + x + 1
Đa thức đã cho trở thành :
t( t + 1 ) - 12
= t2 + t - 12
= t2 - 3t + 4t - 12
= t( t - 3 ) + 4( t - 3 )
= ( t - 3 )( t + 4 )
= ( x2 + x + 1 - 3 )( x2 + x + 1 + 4 )
= ( x2 + x - 2 )( x2 + x + 5 )
= ( x2 - x + 2x - 2 )( x2 + x + 5 )
= [ x( x - 1 ) + 2( x - 1 ) ]( x2 +x + 5 )
= ( x - 1 )( x + 2 )( x2 + x + 5 )
phân tích đa thức thành nhân tử bằng cácphương pháp đã học(đặt nhân tử chung; dùng những hằng đẳng thức; nhóm nhiều hạng tử ; đa thức bậc 2)
a, x^3 - 2x + 4
b, x^3 - 4x^2 + 12x - 27
c, x^2 - 2x^2 + 2x + 1
a: \(x^3-2x+4\)
\(=x^3+2x^2-2x^2-4x+2x+4\)
\(=\left(x+2\right)\left(x^2-2x+2\right)\)
b: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c: \(x^3+2x^2+2x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
5x^2 + 3 . ( x + y )^2 - 5y^2 ( Phân tích theo cách lớp 8 nhé )
Tìm x , y đồng thời thỏa mãn :
x^2 - 4y^2 = 24 và 5x + 14y - 2xy = 35
Phân tích đa thức thành nhân tử bằng phương pháp dùng ẩn phụ :
A = ( 4x - 2 ).( 10x + 4 ).( 5x + 7 ).( 2x + 1 )
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)