Những câu hỏi liên quan
HM
Xem chi tiết
NQ
6 tháng 9 2021 lúc 19:47

ta có 

\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)

Dấu bằng xảy ra khi \(-5\le x\le-2\)

\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)

Dấu bằng xảy ra khi \(x=2\)

\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)

Dấu bằng xảy ra khi \(x\ge2\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
3 tháng 8 2023 lúc 8:26

Nguyễn Minh Quang sai dấu câu A rồi

 

Bình luận (0)
HM
Xem chi tiết
ND
17 tháng 6 2017 lúc 21:35

Ta có: \(C=\left|x+5\right|-\left|x-2\right|=\left|-x-5\right|-\left|2-x\right|\)

Sử dụng bất đẳng thức: \(\left|a\right|-\left|b\right|\le\left|a-b\right|\):

\(C=\left|-x-5\right|-\left|2-x\right|\le\left|-x-5-2+x\right|=\left|-7\right|\)

Dấu \(=\)xảy ra khi: \(\left|-x-5-2+x\right|=7\)

\(\Rightarrow\hept{\begin{cases}-x-5\ge0\\2-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge-5\\x\le2\end{cases}}}\Rightarrow-5\le x\le2\)

Vậy \(-5\le x\le2\)thì \(MAX\)\(C=7\).

Bình luận (0)
HM
Xem chi tiết
LD
16 tháng 6 2017 lúc 8:49

Ta có : |x + 3| \(\ge0\)

           |x - 2| \(\ge0\)

           |x - 5| \(\ge0\)

Nên |x + 3| + |x - 2| +  |x - 5|\(\ge0\)

=>  |x + 3| + |x - 2| +  |x - 5| có giá trị nhỏ nhất là 0

Mà : x ko thể đồng thoqwif sảy ra 2 giá trị 

=> GTNN của biểu thức là : 8 khi x = 2 

Bình luận (0)
HM
17 tháng 6 2017 lúc 10:00

thank bn nha

Bình luận (0)
HM
Xem chi tiết
H24
Xem chi tiết
NN
26 tháng 12 2022 lúc 14:50

đợi tý

Bình luận (0)
WS
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Bình luận (0)
DM
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Bình luận (0)
HB
Xem chi tiết
DN
15 tháng 9 2016 lúc 16:33

T/C của gttđ là >= 0 nên 

a) GTNN = -4

b) GTLN = 2

c) GTNN = 2

Bình luận (0)
TH
Xem chi tiết
DD
10 tháng 10 2015 lúc 17:49

m=1

Bình luận (0)
1M
Xem chi tiết
NT
27 tháng 12 2021 lúc 20:31

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

Bình luận (1)
TZ
Xem chi tiết
NT
18 tháng 3 2021 lúc 22:25

a) Ta có: \(\left(x-2\right)^2\ge0\forall x\)

nên Dấu '=' xảy ra khi x-2=0

hay x=2

Vậy: Gtnn của biểu thức \(\left(x-2\right)^2\) là 0 khi x=2

Bình luận (0)