Những câu hỏi liên quan
H24
Xem chi tiết
TD
19 tháng 4 2020 lúc 16:30

giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )

\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )

vậy ...

b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )

vậy ....

Bình luận (0)
 Khách vãng lai đã xóa
VC
Xem chi tiết
OP
5 tháng 8 2016 lúc 15:49

Ta có : \(\sqrt{2}\)là số vô tỉ

\(\sqrt{3}\)là số vô tỉ

\(\Rightarrow\sqrt{2}+\sqrt{3}\)là số vô tỉ ( đpcm ) 

b) tương tự :

 \(\hept{\begin{cases}\sqrt{2}vôti\\\sqrt{3}vôti\\\sqrt{5}vôti\end{cases}}\)

\(\Rightarrow\sqrt{2}+\sqrt{3}+\sqrt{5}\)vô tỉ

Bình luận (0)
MT
8 tháng 10 2019 lúc 20:53

c) \(\sqrt{2}\)là số vô tỉ nên \(1+\sqrt{2}\)là số vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\)là số vô tỉ

d) \(\sqrt{3}\)là số vô tỉ\(\Rightarrow\frac{\sqrt{3}}{n}\)là số vô tỉ

\(\Rightarrow m+\frac{\sqrt{3}}{n}\)là số vô tỉ

Bình luận (0)
TB
17 tháng 7 2021 lúc 18:25

phản chứng : giả sử tất cả thuộc Q a đặt a= căn 2+ căn 3(a thuộc Q) . bình phương 2 vế ta có a^2=5+2 căn 6=> căn 6 = a^2-5/2 thuộc Q => vô lí

b đặt căn 2 + căn 3 + căn 5 = a. chuyển căn 5 sang vế a bình phương lên ta có 2 căn 6=a^2-2 căn 5 a

bình phương 1 lần nữa =>căn 5= a^4+20a^2-24/4a^3 thuộc Q => vô lí

c bình phương lên => căn 2=A-1 thuộc Q => vô lí

d tương tự căn 3=Bn-mn thuộc Q => vô lí

chúc bạn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NM
11 tháng 11 2021 lúc 21:16

\(\sqrt{3}-\dfrac{m}{n}>0\Leftrightarrow\sqrt{3}>\dfrac{m}{n}\Leftrightarrow3n^2>m^2\)

Vì \(m,n\ge1\) nên \(3n^2\ge m^2+1\)

Với \(3n^2=m^2+1\Leftrightarrow m^2+1⋮3\Leftrightarrow m^2\) chia 3 dư 2 (vô lí)

\(\Leftrightarrow3n^2\ge m^2+2\)

Lại có \(4m^2>1\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2=m^2+1+\dfrac{1}{4m^2}< m^2+2\)

\(\Leftrightarrow\left(m+\dfrac{1}{2m}\right)^2< 3n^2\Leftrightarrow m+\dfrac{1}{2m}< n\sqrt{3}\\ \Leftrightarrow n\sqrt{3}-m>\dfrac{1}{2m}\)

Bình luận (0)
DT
Xem chi tiết
NL
9 tháng 8 2020 lúc 21:10

Bài làm:

a) Vì 1 là số hữu tỉ, \(\sqrt{2}\) là số vô tỉ

=> \(1+\sqrt{2}\) vô tỉ

\(\Rightarrow\sqrt{1+\sqrt{2}}\) vô tỉ

b) Vì n là số hữu tỉ, \(\sqrt{3}\) vô tỉ

=> \(\frac{\sqrt{3}}{n}\) vô tỉ, mà m hữu tỉ

=> \(m+\frac{\sqrt{3}}{n}\) vô tỉ

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
VT
Xem chi tiết
UK
4 tháng 12 2017 lúc 6:00

Đặt vế trái là T, ta có:

\(\dfrac{a}{\sqrt{b+1}}=\dfrac{a\sqrt{2}}{\sqrt{2}.\sqrt{b+1}}\ge\dfrac{a\sqrt{2}}{\dfrac{b+1+2}{2}}=\dfrac{a.2\sqrt{2}}{b+3}\)

Tương tự: \(\dfrac{b}{\sqrt{c+1}}\ge\dfrac{b.2\sqrt{2}}{c+3}\)

\(\dfrac{c}{\sqrt{a+1}}\ge\dfrac{c.2\sqrt{2}}{a+3}\)

Cộng vế theo vế các BĐT vừa chứng minh, ta được

\(T\ge2\sqrt{2}\left(\dfrac{a}{b+3}+\dfrac{b}{c+3}+\dfrac{c}{a+3}\right)=2\sqrt{2}\left(\dfrac{a^2}{ab+3a}+\dfrac{b^2}{bc+3b}+\dfrac{c^2}{ac+3c}\right)\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{\left(a+b+c\right)^2}{\dfrac{\left(a+b+c\right)^2}{3}+3\left(a+b+c\right)}\)

\(T\ge2\sqrt{2}.\dfrac{3^2}{\dfrac{3^2}{3}+9}=\dfrac{3\sqrt{2}}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1

Bình luận (49)
UK
4 tháng 12 2017 lúc 6:05

b) Đặt vế trái là N,ta có:

\(\sum\sqrt{\dfrac{a^3}{b+3}}=\sum\sqrt{\dfrac{a^4}{ab+3}}=\sum\dfrac{a^2}{\sqrt{ab+3}}=\sum\dfrac{2a^2}{\sqrt{4a\left(b+3\right)}}\ge\sum\dfrac{2a^2}{\dfrac{4a+b+3}{2}}=\sum\dfrac{4a^2}{4a+b+3}\)

\(\sum\dfrac{4a^2}{4a+b+3}\ge\dfrac{\left(2a+2b+2c\right)^2}{4a+b+3+4b+c+3+4c+a+3}=\dfrac{3}{2}\)(đpcm)

Đẳng thức xảy ra khi a=b=c=1

Bình luận (0)
NN
Xem chi tiết
H24
19 tháng 1 2022 lúc 10:45

C

Bình luận (0)
TM
19 tháng 1 2022 lúc 10:45

A

Bình luận (2)
DA
19 tháng 1 2022 lúc 10:45

C

Bình luận (0)
NH
Xem chi tiết
DW
13 tháng 11 2018 lúc 21:11

1. sửa đề : Cmr các số trên là số vô tỉ :

a) Giả sử \(\sqrt{1+\sqrt{2}}=m\) (m là số hữu tỉ) thì :

\(\Leftrightarrow1+\sqrt{2}=m\)

\(\Leftrightarrow\sqrt{2}=m-1\)

=> \(\sqrt{2}\) là số hữu tỉ (vô lí)

=> m phải là số vô tỉ

Giả sử \(m+\dfrac{\sqrt{3}}{n}=a\) (a là số hữu tỉ ) thì \(\dfrac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)

=> \(\sqrt{3}\) là số hữu tỉ (vô lí)

=> a phải là số vô tỉ

Bình luận (2)
DW
13 tháng 11 2018 lúc 21:12

2

a) có thể

b,c) Không thể

Bình luận (3)
DW
13 tháng 11 2018 lúc 21:22

3.

a) Ta có :

\(\left(2\sqrt{3}\right)^2=4.3=12\);\(\left(3\sqrt{2}\right)^2=9.2=18\)

\(\left(2\sqrt{3}\right)^2< \left(3\sqrt{2}\right)^2\) nên \(2\sqrt{3}< 3\sqrt{2}\)

b)

\(\left(6\sqrt{5}\right)^2=36.5=180\)

\(\left(5\sqrt{6}\right)^2=25.6=150\)

Vì 180 > 150 => \(\left(6\sqrt{5}\right)^2>\left(5\sqrt{6}\right)^2\)=> \(6\sqrt{5}>5\sqrt{6}\)

c)\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12\)

d)\(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2\)

Bình luận (0)
H24
Xem chi tiết
NM
23 tháng 9 2021 lúc 21:30

Áp dụng BĐT Cosi:

\(\dfrac{a}{\sqrt{b^2+ab}}=\dfrac{a\sqrt{2}}{\sqrt{2\left(b^2+ab\right)}}=\dfrac{a\sqrt{2}}{\sqrt{2b\left(a+b\right)}}\ge\dfrac{a\sqrt{2}}{\dfrac{2b+a+b}{2}}=\dfrac{2\sqrt{2}a}{a+3b}\)

Cmtt: \(\dfrac{b}{\sqrt{c^2+bc}}\ge\dfrac{2\sqrt{2}b}{b+3c};\dfrac{c}{\sqrt{a^2+ca}}\ge\dfrac{2\sqrt{2}c}{c+3a}\)

\(\Leftrightarrow P\ge2\sqrt{2}\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge2\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge\dfrac{2\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}\\ \Leftrightarrow\dfrac{P}{\sqrt{2}}\ge\dfrac{2}{\dfrac{4}{3}}=\dfrac{3}{2}\\ \Leftrightarrow P\ge\dfrac{3\sqrt{2}}{2}\)

Dấu \("="\Leftrightarrow a=b=c\)

Bình luận (1)