\(E=x^6-6x^5+6x^4-6x^3+6x^2-6x+6\) tại x=5
xin lỗi lần trước ghi đề sai
Tính giá trị biểu thức
\(E=x^6-6x^5+6^4-6x^3+6x^2-6x+6x^4\) tại x=5
Do (x=5Rightarrow x+1=6).
Khi đó, tại x=5, ta có:
(E=x^6-6x^5+6x^4-6x^3+6x^2-6x+6^4)
(=x^6-left(x+1 ight)x^5+left(x+1 ight)x^4-left(x+1 ight)x^3+left(x+1 ight)x^2-left(x+1 ight)x+6^4)
(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2+x+6^4)
(=x+6^4=5+1296=1301)
Vậy tại x=5 thì E=1301
cho E= x6 - 6x5 + 6x4 - 6x3 + 6x + 6
tính giá trị của biểu thức E với x=5
1/cho a+b+c=0 . cmr: a^3+b^3+c^3=3abc
2/ Cho A=x6-6x5+6x4-6x3+6x2-6x+6.Tính giá trị của A khi x=5
1.ta có:
x^3 + y^3 + z^3 - 3xyz = (x+y)^3 + z^3 - 3x^2y - 3xy^2 - 3xyz
= (x+y)^3 + z^3 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)^2.z - 3(x+y)z^2 - 3xy(x + y + z)
= (x+y+z)^3 - 3(x+y)z(x+ y + z) - 3xy(x + y + z)
=(x+y+z)[(x+y+z)^2 - 3(x+y)z - 3xy]
với x+y+z = 0 => x^3 + y^3 + z^3 - 3xyz = 0 => x^3 + y^3 + z^3 = 3xyz
2.
x=5
=>6=x+1
=> A=x6-6x5+6x4-6x3+6x2-6x+6=x6-(x+1).x5+(x+1)x4-(x+1)x3+(x+1)x2-(x+1)x+(x+1)
=x6-x6-x5+x5-x4+x4-x3+x3-x2+x2-x+x+1
=1
vậy A=1 khi x=5
1,
\(a^3+b^3+c^3=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc=3abc\)
2,
\(A=\left(x-1\right)\left(x-5\right)\left(x^4+x^2+1\right)+1\)
x=5 thì A=1
a+b+c=0 =>a+b= -c
=> (a+b)^3=-c^3
=>a^3+b^3+c^3= -3ab(a+b)
=>a^3+b^3+c^3=3abc (vì a+b=c)
=> dpcm
tinh gia tri cua A tai x=5 ma ko thay so truc tiep
\(A=2015-6x+6x^2-6x^3+6x^4-6x^5+x^6\)
Nguyễn Đình Dũng vs Minh Hiền không khác nhau tẹo nào
1/ Phân tích đa thức thành nhân tử:
a/x^3 + 4x^2 - 29x +24
b/x^4 +6x^3 +7x^2 - 6x +1
c/(x^2 -x +2)^2 + (x-2)^2
d/6x^5 + 15x^4 + 20x^3 + 15x^2 + 6x +1
e/x^6 + 3x^5 + 4x^4 + 4x^3 + 4x^2 + 3x +1
a) \(x^3+4x^2-29x+24=x^3-x^2+5x^2-5x-24x+24\)
\(=x^2\left(x-1\right)+5x\left(x-1\right)-24\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+5x-24\right)\)
\(=\left(x-1\right)\left(x^2+8x-3x-24\right)\)
\(=\left(x-1\right)\left[x\left(x+8\right)-3\left(x+8\right)\right]\)
\(=\left(x-1\right)\left(x+8\right)\left(x-3\right)\)
b) \(x^4+6x^3+7x^2-6x+1\)
\(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)
\(=x^4+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x-1\right)^2\)
c) \(\left(x^2-x+2\right)^2+\left(x-2\right)^2=x^4-2x^3+6x^2-8x+8\)
\(=\left(x^4-2x^3+2x^2\right)+\left(4x^2-8x+8\right)\)
\(=x^2\left(x^2-2x+2\right)+4\left(x^2-2x+2\right)\)
\(=\left(x^2-2x+2\right)\left(x^2+4\right)\)
d) Phức tạp mà dài quá :v
\(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=3x^4\left(2x+1\right)+6x^3\left(2x+1\right)+7x^2\left(2x+1\right)+4x\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left[\left(3x^4+3x^3+x^2\right)+\left(3x^3+3x^2+x\right)+\left(3x^2+3x+1\right)\right]\)
\(=\left(2x+1\right)\left[x^2\left(3x^2+3x+1\right)+x\left(3x^2+3x+1\right)+\left(3x^2+3x+1\right)\right]\)
\(=\left(2x+1\right)\left(3x^2+3x+1\right)\left(x^2+x+1\right)\)
e)
- Câu này có thể áp dụng định lý: nếu tổng các hệ số biến bậc chẵn và tổng các hệ số biến bậc lẻ bằng nhau thì đa thức có nhân tử x + 1.
- Nhận thấy: 1 + 4 + 4 + 1 = 3 + 4 + 3
\(x^6+3x^5+4x^4+4x^3+4x^2+3x+1\)
\(=(x^6+x^5)+(2x^5+2x^4)+(2x^4+2x^3)+(2x^3+2x^2)+(2x^2+2x)+(x+1)\)
\(=x^5(x+1)+2x^4(x+1)+2x^3(x+1)+2x^2(x+1)+2x(x+1)+(x+1)\)
\(=(x+1)(x^5+2x^4+2x^3+2x^2+2x+1)\)
Tiếp tục phân tích bằng cách trên vì 1 + 2 + 2 = 2 + 2 +1
\(=\left(x+1\right)\left(x+1\right)\left(x^4+x^3+x^2+x+1\right)\)
\(=\left(x+1\right)^2\left(x^4+x^3+x^2+x+1\right)\)
a) Gọi CT ghi hóa trị của NH3 là \(N^xH^I_3\) (x: nguyên, dương)
Theo quy tắc hóa trị, ta có:
\(x.1=I.3\\ =>x=\dfrac{1.I}{3}=III\)
Vậy: Hóa trị của N có hóa trị III trong hợp chất NH3
b) Gọi CT kèm hóa trị của Zn(OH)2 là \(Zn^x\left(OH\right)^y_2\) (x,y: nguyên, dương).
Theo quy tắc hóa trị, ta có:
\(x.1=y.2\\ =>\dfrac{x}{y}=\dfrac{2}{1}=\dfrac{II}{I}\)
=> x=II
y=I
=> Hóa trị của Zn là II trong hợp chất trên
\(6x^2.\sqrt{x^3-6x+5}=\left(x^2+2x-6\right)\left(x^3+4\right)\)
phan tích đa thưc thành nhân tử
a) x^2+10x+21
b) x^3-7x+6
c) x^3-7x+6
d) x^3+5x^2+8x+4
e) x^3-9x^2+6x
g) (x+2)(x+3)(x+4)(x+5)-24
h) x^4+6x^3+7x^2-6x+1
g) (x+2)(x+3)(x+4)(x+5)-24 = \(\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)
=\(\left[x^2+7x+10\right]\left[x^2+7x+12\right]\)
đặt \(x^2+7x+10=a\)
ta có \(a\left(a+2\right)-24=a^2+2a-24\)
\(=a^2+2a+1-25\)
\(=\left(a+1\right)^2-5^2\)
\(=\left(a+1-5\right)\left(a+1+5\right)\)
\(=\left(a-4\right)\left(a+6\right)\)
\(\Rightarrow\) \(\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
a) = (x +5)2 - 22 = (x+5 -2)(x+5 +2) = (x+3)(x+7)
b) = x(x2 -1) -6(x-1)= x(x+1)(x-1) -6(x-1) = (x-1)(x(x+1)-6)
a) \(x^2+10x+21=x^2+3x+7x+21\)
\(=x\left(x+3\right)+7\left(x+3\right)=\left(x+7\right)\left(x+3\right)\)
từ ý b đến ý e dùng chức lăng EQN của máy tính
bạn mở mt bấm mode rồi ấn 5 rồi tìm cái có ax3+bx2+cx+d
b) nhập 1 = ; 0 =;-7=;6= rồi ấn = sao cho hết nghiệm
có \(X_1=2;X_2=1;X_3=-3\)
làm phép chia
1) (x^6 - 2x^4 + 6x^3 - 4x^2) : 6x^2
2) (-2x^5 = 3x^2 - 4x^3) : 2x^2
3) (15x^3 - 10x^2 + x - 2) : (x - 2)
4) (2x^4 -3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
cho \(g\left(x\right)=x^6-6x^5+6x^4-6x^3+6x^2-6x+1\)\(1\) tính \(g\left(1\right)\)
g(1)=16 - 6 x 15 + 6 x 14 - 6 x 13+ 6 x 12 - 6 x 1 +11
= 1 - 6 + 6 - 6 + 6 - 6 + 11
= 6