Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
MA
Xem chi tiết
NX
16 tháng 1 2021 lúc 19:20

b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5

c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5

d) 24n + 2 + 1 = 24n . 2+ 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5

e) 92n+1   + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10

Hok tốt vui

Bình luận (0)
H24
15 tháng 7 2024 lúc 10:35

Chỉ

Bình luận (0)
HK
Xem chi tiết
NT
13 tháng 10 2023 lúc 22:21

Để chứng minh rằng biểu thức 34n+1 + 2.32n+2 - 21 chia hết cho 64, ta cần sử dụng phương pháp toán học gọi là "chứng minh bằng quy nạp". Bước 1: Kiểm tra điều kiện ban đầu - Khi n = 0, ta có: - Biểu thức ban đầu = 34(0) + 1 + 2.32(0) +2 -21 = -20. - Vì -20 không chia hết cho số nguyên dương nào khác của số nguyên tố lớn nhất trong các số nguyên tố nhỏ hơn hoặc bằng căn bậc hai của số này (tức là căn bậc hai của |64|), nên không thể kết luận rằng biểu thức trên chia hết cho 64. Bước 2: Giả sử giả thiết quy nạp - Giả sử với một giá trị nguyên dương k (k ≥0), biểu thức sau: P(k):=34k+1 +2.32k+2-21 Chia hết cho số nguyên tố lớn nhất trong các số nguyên tố nhỏ hơn hoặc bằng căn bậc hai của |64|. Bước 3: Chứng minh công thức quy nạp - Ta cần chứng minh rằng nếu P(k) chia hết cho 64, thì P(k+1) cũng chia hết cho 64. - Giả sử P(k) chia hết cho 64, tức là tồn tại một số nguyên dương a sao cho: P(k) = 64a. - Ta cần chứng minh rằng tồn tại một số nguyên dương b sao cho: P(k+1) = 34(k+1)+1 +2.32(k+1)+2 -21 = 34k +35 +2.32k +36 -21 = (34k+1 +2.32k+2 -21) + (34*34 + 2*32*36). Vì biểu thức trong ngoặc đơn là giá trị cố định không phụ thuộc vào k, ta có thể viết lại biểu thức trên thành: P(k+1) = (P(k)) + C, trong đó C là một giá trị cố định không phụ thuộc vào k. - Như vậy, ta có: P(k+1) = (P(K)) + C = (64a) + C. - Với a và C là các số nguyên dương, ta có thể viết lại biểu thức trên thành: P(K+1)=b * |64|, trong đó b=a+C. Bước 4: Kết luận Vì đã xác nhận rằng nếu P(k) chia hết cho 64 thì P(k+1) cũng chia hết cho 64, và với giá trị ban đầu n=0, biểu thức không chia hết cho 64, ta có thể kết luận rằng biểu thức 34n+1 +2.32n+2 -21 không chia hết cho 64 với mọi số nguyên dương n.

đúng hay sai e không biết em làm trên chat gpt

Bình luận (0)
H24
Xem chi tiết
HN
Xem chi tiết
TY
25 tháng 12 2021 lúc 15:59

cái này thì chưa bt

Bình luận (0)
H24
25 tháng 12 2021 lúc 16:03

Tham khảo 

undefined

Bình luận (2)
TT
Xem chi tiết
KT
Xem chi tiết
KT
1 tháng 9 2018 lúc 21:06

ai nhanh mình k

Bình luận (0)
VT
5 tháng 5 2021 lúc 21:15

1 /2 -1 /4 + 1 /8-1 /16 + 1 /32-1 /64 < 1 /3

Cách 1:21/64 < 1/3

Cách 2:21/64 < 0.(3)

Đúng

1 /2 + 1 /4 + 1 /8 + 1 /16 + 1 /32 + 1 /64 < 1 /3

Cách 2:63/64 < 0.(3)

Ko đúng

Câu 3 mình ko biết

Bình luận (0)
 Khách vãng lai đã xóa
HH
5 tháng 5 2021 lúc 21:20

a)cho \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)là A

ta có:A=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

2A=\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)2\)

2A=\(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)

2A+A=\(\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)\)

3A=\(1-\frac{1}{64}\Rightarrow3A=\frac{63}{64}\Rightarrow A=\frac{21}{64}< \frac{1}{3}\)

vậy \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)

b) sai đề (\(\frac{63}{64}< \frac{1}{3}\)hay sao)

c)sai nối (nếu x=y=3 thì 2x+3y=17 chia hết nhưng 9x+5y=42 ko chia hết)

Bình luận (0)
 Khách vãng lai đã xóa
TP
Xem chi tiết
LB
Xem chi tiết
RC
Xem chi tiết
BG
20 tháng 10 2017 lúc 22:47

abc  = a.100+b.10+c

Theo tính chất chia hết  của phép cộng ta có :

a.100 chia hết 4

b.10 chia hết 4

c chia hết 4 (đpcm)

b) 9x + 5y

=2x +3y+7x +2y

=2(2x+3y)+5x -1y

=3(2x+3y)+3x-4y

=4(2x+3y) +1x-7y

.........................

=13(2x +3y)-17x-34y

Vì 17 chia hết17

       34 chia hết 17

=>13(3x+2y)-17x-34y hay 2x +3y chia hết cho 4

Bình luận (0)
BG
20 tháng 10 2017 lúc 22:47

k nha bạn k nha k nha mình là người đầu tiên

Bình luận (0)
BN
Xem chi tiết
NP
2 tháng 11 2016 lúc 13:39

Chọn

Giải ra đầy đủ nhá

Bình luận (2)