Chứng minh: 34n+4 - 43n+3 chia hết cho 17
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Chứng minh rằng với mọi số tự nhiên n:
b) 34n + 1 + 2 chia hết cho 5
c) 24n + 1 + 3 chia hết cho 5
d) 24n + 2 + 1 chia hết cho 5
e) 92n+1 + 1 chia hết cho 10
b) 34n + 1 + 2 = 34n . 3 + 2 = (...1) . 3 + 2 = (....3) + 2 = (....5) ⋮ 5
c) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
d) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
e) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
Chứng minh 34n+1+2.32n+2 -21 chia hết cho 64
Để chứng minh rằng biểu thức 34n+1 + 2.32n+2 - 21 chia hết cho 64, ta cần sử dụng phương pháp toán học gọi là "chứng minh bằng quy nạp". Bước 1: Kiểm tra điều kiện ban đầu - Khi n = 0, ta có: - Biểu thức ban đầu = 34(0) + 1 + 2.32(0) +2 -21 = -20. - Vì -20 không chia hết cho số nguyên dương nào khác của số nguyên tố lớn nhất trong các số nguyên tố nhỏ hơn hoặc bằng căn bậc hai của số này (tức là căn bậc hai của |64|), nên không thể kết luận rằng biểu thức trên chia hết cho 64. Bước 2: Giả sử giả thiết quy nạp - Giả sử với một giá trị nguyên dương k (k ≥0), biểu thức sau: P(k):=34k+1 +2.32k+2-21 Chia hết cho số nguyên tố lớn nhất trong các số nguyên tố nhỏ hơn hoặc bằng căn bậc hai của |64|. Bước 3: Chứng minh công thức quy nạp - Ta cần chứng minh rằng nếu P(k) chia hết cho 64, thì P(k+1) cũng chia hết cho 64. - Giả sử P(k) chia hết cho 64, tức là tồn tại một số nguyên dương a sao cho: P(k) = 64a. - Ta cần chứng minh rằng tồn tại một số nguyên dương b sao cho: P(k+1) = 34(k+1)+1 +2.32(k+1)+2 -21 = 34k +35 +2.32k +36 -21 = (34k+1 +2.32k+2 -21) + (34*34 + 2*32*36). Vì biểu thức trong ngoặc đơn là giá trị cố định không phụ thuộc vào k, ta có thể viết lại biểu thức trên thành: P(k+1) = (P(k)) + C, trong đó C là một giá trị cố định không phụ thuộc vào k. - Như vậy, ta có: P(k+1) = (P(K)) + C = (64a) + C. - Với a và C là các số nguyên dương, ta có thể viết lại biểu thức trên thành: P(K+1)=b * |64|, trong đó b=a+C. Bước 4: Kết luận Vì đã xác nhận rằng nếu P(k) chia hết cho 64 thì P(k+1) cũng chia hết cho 64, và với giá trị ban đầu n=0, biểu thức không chia hết cho 64, ta có thể kết luận rằng biểu thức 34n+1 +2.32n+2 -21 không chia hết cho 64 với mọi số nguyên dương n.
đúng hay sai e không biết em làm trên chat gpt
Chứng minh 34n+1+32n.10-13 chia hết cho 64 với mọi n.
Có thể làm cách tách rồi xét tính chia hết không ạ? Em tìm có cách chứng minh quy nạp nhưng em chưa có học ạ):
Giúp mình với
Chứng minh 1+3+32+...+34n-1 chia hết cho 5 và 8
Bài 1:
A) Cho a-5b chia hết cho 17. Chứng minh: ab chia hết cho 17
B) Cho dcba chia hết cho 4 . Chứng minh: a+2b chia hết cho 4
chứng minh 1/2 - 1/4 + 1/8 - 1/16 + 1/32 - 1/64 < 1/3
Chứng minh 1/2 + 1/4 + 1/8 + 1/16+ 1/32 + 1/64 < 1/3
Chứng minh: ( 2x + 3y ) Chia hết cho 17 ki và chỉ khi ( 9x + 5y) chia hết cho 17
1 /2 -1 /4 + 1 /8-1 /16 + 1 /32-1 /64 < 1 /3
Cách 1:21/64 < 1/3
Cách 2:21/64 < 0.(3)
Đúng
1 /2 + 1 /4 + 1 /8 + 1 /16 + 1 /32 + 1 /64 < 1 /3
Cách 2:63/64 < 0.(3)
Ko đúng
Câu 3 mình ko biết
a)cho \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)là A
ta có:A=\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
2A=\(\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)2\)
2A=\(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
2A+A=\(\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)\)
3A=\(1-\frac{1}{64}\Rightarrow3A=\frac{63}{64}\Rightarrow A=\frac{21}{64}< \frac{1}{3}\)
vậy \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
b) sai đề (\(\frac{63}{64}< \frac{1}{3}\)hay sao)
c)sai nối (nếu x=y=3 thì 2x+3y=17 chia hết nhưng 9x+5y=42 ko chia hết)
1. Cho 3.a +2.b chia hết cho 17
chứng minh rằng : 10.a +b chia hết cho 17
2.Cho a = 5.b chia hết cho 17
chứng minh rằng: 10.a +b chia hết cho 17
1 Cho abc chia hết cho 4 trong đó a,b là chữ số chẵn. Chứng minh rằng c chia hết cho 4 va bac chia hết cho 4
2 Cho 3a+2b chia hết cho 17 . Chứng mih rằng 10a +b chia hết cho 17
! Cho A = abc chia hết cho 4 .Với a;b là các chữ sô chẵn..Chứng minh rằng c chia hết cho 4
2 Chứng minh rằng nếu 2x + 3y chia hết cho 17 (x;y thuộc N) thì 9x + 5y chia hết cho 17
abc = a.100+b.10+c
Theo tính chất chia hết của phép cộng ta có :
a.100 chia hết 4
b.10 chia hết 4
c chia hết 4 (đpcm)
b) 9x + 5y
=2x +3y+7x +2y
=2(2x+3y)+5x -1y
=3(2x+3y)+3x-4y
=4(2x+3y) +1x-7y
.........................
=13(2x +3y)-17x-34y
Vì 17 chia hết17
34 chia hết 17
=>13(3x+2y)-17x-34y hay 2x +3y chia hết cho 4
k nha bạn k nha k nha mình là người đầu tiên
1/ Chứng minh A chia hết cho 15
2/ Cho B = 3 + 33 + 35 +....+31991
Chứng minh B chia hết cho 13 và B chia hết cho 41
3/ A = 119 + 118+ .... + 11 + 1
Chứng minh A chia hết cho 5
4/ Chứng minh:
a. 1088 + 8 chia hết cho 2
b. 88 + 220 chia hết cho 17