CM: 1^3 + 2^3 + ... +d^3 = (1+2+3+..+d)^2
C=1/2^2+1/3^2+1/4^2+...+1/19^2+1/20^2
CM C <3/4
D=1/2^2+1/3^2+1/4^2+...+1/100^2
CM D<1
bộ ba số nào sau đây là độ dài ba cạnh của 1 tam giác
A. 2, 3, 6 (cm) B. 2, 4, 6 (cm)
C. 3, 2, 5 (cm) D. 2, 3, 4 (cm)
b,CM: B= 3^1+3^2+3^3+.....+3^2010 chia hết cho4&13
c,CM: C= 5^1+5^2+5^3+.....+5^2010 chi hết cho 6&31
d, D= 7^1+7^2+7^3+.....+ 7^2010 chia hết cho 8&57
GIÚP MIK NỐT 3 CÂU NÀY NHA MN
b: B=3(1+3)+3^3(1+3)+...+3^2009(1+3)
=4(3+3^3+...+3^2009) chia hết cho 4
B=3(1+3+3^2)+3^4(1+3+3^2)+...+3^2008(1+3+3^2)
=13(3+3^4+...+3^2008) chia hết cho 13
c: \(C=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2009}\left(1+5\right)\)
\(=6\left(5+5^3+...+5^{2009}\right)⋮6\)
\(C=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)
\(=31\left(5+5^4+...+5^{2008}\right)⋮31\)
d: \(D=7\left(1+7\right)+7^3\left(1+7\right)+...+7^{2009}\left(1+7\right)\)
\(=8\left(7+7^3+...+7^{2009}\right)⋮8\)
\(D=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)
\(=57\left(7+7^4+...+7^{2008}\right)⋮57\)
Cho △ ABC , qua A kẻ đường thẳng d1 // BC qua B , kẻ đường thẳng d2 // AC , qua C kẻ d3 // AB . d1 Ω d2 = M , d2 Ω d3 = N , d1 Ω d3 = K . Chứng minh 3 đường thẳng : CM , AN , BK đồng quy .
AK//BC(gt)
BA//CK(gt)
\(\Rightarrow\)ABCK là hbh
CMTT \(\Rightarrow\)ACBM là hbh
\(\Rightarrow\)MA=AK(=BC)
\(\Rightarrow\) NA là đ trung tuyến
CMTT \(\Rightarrow\)KB là đ trung tuyến\(\Rightarrow\)MC là đ trung tuyến
\(\Rightarrow\)NA, KB, MC đồng quy tại 1 điểm
a) Cho a+b+c=0. CM:
\(a^4+b^4+c^4=\dfrac{1}{2}\left(a^2+b^2+c^2\right)^2\)
b) Cho a+b+c+d=0. CM:\(a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\)
a ) Ta có : \(a+b+c=0\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=-2\left(ab+ac+bc\right)\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=4\left(ab+ac+bc\right)^2\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2a^2c^2=4\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2c^2ab\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)+8abc\left(a+b+c\right)\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)+8abc.0\)
\(\Leftrightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+a^2c^2\right)\)
Lại có : \(\dfrac{\left(a^2+b^2+c^2\right)^2}{2}=\dfrac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}\)
\(=\dfrac{a^4+b^4+c^4+a^4+b^4+c^4}{2}=\dfrac{2\left(a^4+b^4+c^4\right)}{2}\)
\(=a^4+b^4+c^4\left(đpcm\right)\)
b ) \(a+b+c+d=0\)
\(\Leftrightarrow a+b=-\left(c+d\right)\)
\(\Leftrightarrow\left(a+b\right)^3=-\left(c+d\right)^3\)
\(\Leftrightarrow\left(a+b\right)^3+\left(c+d\right)^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3+3a^2b+3b^2a+3c^2d+3d^2c=0\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=-3a^2b-3b^2a-3c^2d-3d^2c\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(-a^2b-b^2a-c^2d-d^2c\right)\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[-ab\left(a+b\right)-cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left[ab\left(c+d\right)-cd\left(c+d\right)\right]\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3\left(ab-cd\right)\left(c+d\right)\left(đpcm\right)\)
giup voi a minh dang can gap ai nhanh minh cho dung nhe
cm bieu thuc D khong phu thuộc vào biến : D=(2-3)3+2x(x-3)+(3x+1)(9x2-3x+1)-6x(7x-3)+3x3
Có thể đè bị sai bạn nào bít thi bảo mik!!!!!1
\(D=\left(2-3\right)^3+2x\left(x-3\right)+\left(3x+1\right)\left(9x^2-3x+1\right)-6x\left(7x-3\right)+3x^3\)
\(=-1+2x^2-6x+27x^3-9x^2+3x+9x^2-3x+1-42x^2+18x+3x^3\)
\(=-40x^2+12x+30x^3\)
=> Biểu thức có phụ thuộc vào biến x
Vậy đề sai .
cm các biểu thức sau ko phụ thuộc vào x :c)C=x(2x+1)-x^2(x+2)+x^3-x+3 d)(2x+3)(4x^2-6x+9)-2(4x^3-1) e) (4x-1)^3-(4x-3)(16x^2+3) f) (x+1)^3-(x-1)^3-6(x+1)(x-1)
c)C=x(2x+1)-x^2(x+2)+x^3-x+3
=2x^2+x-x^3-2x^2+x^3-x+3
=3(không PT vào biến x)
Cho a, b, c, d dương. CM:
1) \(\frac{a^2}{b^5}+\frac{b^2}{c^5}+\frac{c^2}{d^5}+\frac{d^2}{a^5}\ge\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)
2) \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{a+b+c}{\sqrt[3]{abc}}\)
3) \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{d^2}+\frac{d^2}{a^2}\ge\frac{a+b+c+d}{\sqrt[4]{abcd}}\)
4) \(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge9;a+b+c\le1\)
Làm tạm một câu rồi đi chơi, lát làm cho.
4)
Áp dụng bất đẳng thức Cauchy-Schwarz :
\(VT\ge\frac{\left(1+1+1\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1}=9\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
2/ Cô: \(\frac{2a}{b}+\frac{b}{c}\ge3\sqrt[3]{\frac{a.a.b}{b.b.c}}=3\sqrt[3]{\frac{a^3}{abc}}=\frac{3a}{\sqrt[3]{abc}}\)
Tương tự hai BĐT còn lại và cộng theo vế thu được:
\(3.VT\ge3.VP\Rightarrow VT\ge VP^{\left(Đpcm\right)}\)
Đẳng thức xảy ra khi a = b= c