Những câu hỏi liên quan
VT
Xem chi tiết
LL
5 tháng 10 2021 lúc 21:54

\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}.x=6+3x\)

\(\Rightarrow x^3-3x=6\)

\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)

\(\Rightarrow y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\right)\)

\(=34+3\sqrt[3]{289-288}.y=34+3y\)

\(\Rightarrow y^3-3y=34\)

\(P=x^3+y^3-3\left(x+y\right)+2009=\left(x^3-3x\right)+\left(y^3-3y\right)+2009\)

\(=6+34+2009=2049\)

Bình luận (0)
H24
Xem chi tiết
BA
1 tháng 5 2023 lúc 15:44

Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\) 

=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2

=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)

thay vào A=\(\dfrac{-2}{3}\)

b)

A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)

Dấu bằng xẩy ra\(\Leftrightarrow\) x=0

Bình luận (0)
BA
1 tháng 5 2023 lúc 15:48

chỗ đó cho thêm x-1 nha

đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
H24
16 tháng 12 2020 lúc 10:59

undefined

Bình luận (0)
H24
Xem chi tiết
TU
19 tháng 9 2019 lúc 20:30

làm ra chưa chỉ với bạn

Bình luận (0)
NN
Xem chi tiết
TU
19 tháng 9 2019 lúc 20:30

làm ra chưa chỉ với bạn

Bình luận (0)
NB
Xem chi tiết
NT
4 tháng 7 2023 lúc 21:56

a: \(A=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right)\cdot\dfrac{x+2}{6}\)

\(=\dfrac{x-2x-4+x-2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x+2}{6}=\dfrac{-6}{6}\cdot\dfrac{1}{x-2}=\dfrac{-1}{x-2}\)

b: x=2 ko thỏa mãn ĐKXĐ

=>Loại

Khi x=3 thì A=-1/(3-2)=-1

c: A=2

=>x-2=-1/2

=>x=3/2

Bình luận (0)
TN
Xem chi tiết
H24
Xem chi tiết
H24
3 tháng 12 2018 lúc 19:03

thiếu đề : \(\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right).\frac{4x^2-4}{5}.\)

Bài 2 :

a, Để \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4^2-4}{5}\)

\(\Rightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}}\Rightarrow\orbr{\begin{cases}x\ne1\\x\ne-1\end{cases}}\)

b,\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\frac{4x^2-4}{5}\)

\(B=\left[\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x+1\right)\left(x-1\right)}-\frac{x+3}{2\left(x+1\right)}\right].\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{x^2+2x-3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\left[\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{4}{2\left(x-1\right)\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)

\(B=\frac{8}{5}\)

=> giá trị của B ko phụ thuộc vào biến x

Bình luận (0)
DP
3 tháng 12 2018 lúc 19:07

bài 1

=\(^{\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x+1\right)^2}\)

=\(\left(2x+1+2x-1\right)^2\)

=\(\left(4x\right)^2\)

=\(16x^2\)

Tại x=100 thay vào biểu thức trên ta có:

16*100^2=1600000

Bình luận (0)
H24
3 tháng 12 2018 lúc 19:11

\(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)=\left[\frac{x+1}{2.\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2.\left(x+1\right)}\right]\)

\(\Rightarrow\hept{\begin{cases}x\ne1\\x\ne\pm1\\x\ne-1\end{cases}\Rightarrow x\pm1}\)

Vậy để B xác định => x=+-1

Bình luận (0)