Cho x, y là hai số dương có tổng bằng 1. Chứng minh rằng
x/√(1-x^2 )+y/√(1-y^2 )≥3/√2
Cho x, y là hai số dương có tổng bằng 1. Chứng minh rằng:
\(\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}\ge\frac{2}{\sqrt{3}}\)
Làm biếng nghĩ quá. Chơi cách này cho mau vậy.
\(\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}\ge\frac{2}{\sqrt{3}}\)
\(\Leftrightarrow\frac{x}{\sqrt{3\left(1-x\right)\left(1+x\right)}}+\frac{y}{\sqrt{3\left(1-y\right)\left(1+y\right)}}\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{x}{2-x}+\frac{y}{2-y}\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{1-y}{1+y}+\frac{y}{2-y}\ge\frac{2}{3}\)
\(\Leftrightarrow4y^2-4y+1\ge0\)
\(\Leftrightarrow\left(2y-1\right)^2\ge0\left(đung\right)\)
Cho hai số nguyên dương x, y thỏa mãn x 2 +y 2 +2x(y−1) +2y+1 là số chính phương. Chứng minh rằng x = y
Xét \(P=x^2+y^2+2x\left(y-1\right)+2y+1\)
\(P=x^2+y^2+2xy-2x+2y+1\)
+) Nếu \(y>x\) thì \(2y-2x+1>0\). Do đó \(P>\left(x+y\right)^2\). Hơn nữa:
\(P< x^2+y^2+1+2xy+2x+2y\) \(=\left(x+y+1\right)^2\),
suy ra \(\left(x+y\right)^2< P< \left(x+y+1\right)^2\), vô lí vì P là SCP.
+) Nếu \(x>y\) thì \(2y-2x+1< 0\) nên \(P< \left(x+y\right)^2\)
Hơn nữa \(P>x^2+y^2+1+2xy-2x-2y\) \(=\left(x+y-1\right)^2\)
Suy ra \(\left(x+y-1\right)^2< P< \left(x+y\right)^2\), vô lí vì P là SCP.
Vậy \(x=y\) (đpcm)
(Cơ mà nếu thay \(x=y\) vào P thì \(P=4x^2+1\) lại không phải là SCP đâu)
cho x,y là các số thực dương thỏa mãn 1/x+1/y=2. Chứng minh rằng 5x^2+y-4xy+y^2 lớn hơn hoặc bằng 3
BT hè vui :PP
1 ) Cho 3 số dương x, y, z có tổng bằng 1.Chứng minh rằng
\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}>14\)
2 ) Cho 3 số thực dương x, y, z thỏa mãn \(x+y+z=3\).Chứng minh rằng
\(\frac{x^3}{y^3+8}+\frac{y^3}{z^3+8}+\frac{z^3}{x^3+8}\ge\frac{1}{9}+\frac{2}{27}\left(xy+yz+xz\right)\)
1/
\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\
\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)
Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\)
Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14
1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)
vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)
đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)
\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)
đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)
hệ này vô nghiệm nên bât không trở thành đẳng thức
vậy bất đẳng thức được chứng minh
2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)
tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên
\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có
\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)
từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1
Bài 1. Cho x, y là hai số nguyên dương thỏa mãn x2 + 2y là một số chính phương. Chứng minh rằng x2 + y là tổng của hai số chính phương
Bài 2. Cho a, b là hai số nguyên. Chứng minh rằng 2a2+2b2 là tổng của hai số chính phương
Bài 2:
Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)
=(a+b)2+(a-b)2 là tổng 2 số chính phương
⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)
Cho x và y là hai số thực dương thỏa x + y = 1.Chứng minh rằng :1/(x^2+y^2) +1/xy >= 4+ 2căn(3)
Cho \(x,y\) là hai số dương có tổng không lớn hơn 2. Chứng minh rằng
\(\dfrac{1}{\sqrt{1+x^2}}+\dfrac{1}{\sqrt{1+y^2}}\le\dfrac{2}{\sqrt{1+xy}}\)
1) Với x, y là các số thực dương thảo mãn \(\frac{x}{2}+\frac{y}{3}+\frac{xy}{6}=3\), chứng minh rằng \(27x^3+8y^3\ge432\)
2) Với a, b, c không âm thỏa mãn \(a^2+b^2+c^2=1\), chứng minh rằng \(a^3+2b^3+3c^3\ge\frac{6}{7}\)
3) Cho x, y, z là các số thực dương có tổng bằng 1, chứng minh rằng \(x+\sqrt{xy}+\sqrt[3]{xyz}\le\frac{4}{3}\)
Cho x, y là hai số thực dương. Chứng minh rằng:
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(BĐT\Leftrightarrow\frac{2-2xy}{2+x^2+y^2}+\frac{2x^2-2y}{1+2x^2+y^2}+\frac{2y^2-2x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow1-\frac{2-2xy}{2+x^2+y^2}+1-\frac{2x^2-2y}{1+2x^2+y^2}+1-\frac{2y^2-2x}{1+x^2+2y^2}\le3\)
\(\Leftrightarrow\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le3\)(*)
Theo bất đẳng thức Bunyakovsky dạng phân thức: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}\le\frac{x^2}{1+x^2}+\frac{y^2}{1+y^2}\)(1); \(\frac{\left(y+1\right)^2}{1+2x^2+y^2}\le\frac{y^2}{x^2+y^2}+\frac{1}{x^2+1}\)(2); \(\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\frac{x^2}{x^2+y^2}+\frac{1}{y^2+1}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{\left(x+y\right)^2}{2+x^2+y^2}+\frac{\left(y+1\right)^2}{1+2x^2+y^2}+\frac{\left(x+1\right)^2}{1+x^2+2y^2}\le\)\(\left(\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}\right)+\left(\frac{1}{y^2+1}+\frac{y^2}{y^2+1}\right)+\left(\frac{1}{x^2+1}+\frac{x^2}{x^2+1}\right)=3\)
Như vậy (*) đúng
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = 1
\(\frac{1-xy}{2+x^2+y^2}+\frac{x^2-y^2}{1+2x^2+y^2}+\frac{y^2-x}{1+x^2+2y^2}\ge0\)
\(\Leftrightarrow\frac{1-xy+3x^2-2y^2-2y^2+x}{\left(1+x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\frac{2\left(1+x^2+y^2\right)+x^2}{1+x^2+y^2}\ge0\)
Vì x2 và y2 >0
\(\Rightarrow2+\frac{x^2}{1+x^2+y^2}\ge0\)(luôn đúng)
Bạn nhatt quynhh xem lại bài bạn đi nha. Phô diễn kỹ thuật tí:
Bài này đúng với mọi x, y là các số thực. Thật vậy\(,\)
Bất đẳng thức đã cho tương đương với: (vô thống kê hỏi đáp mình xem LaTex nha, tại olm bị lỗi LaTex)