Những câu hỏi liên quan
EH
Xem chi tiết
H24
11 tháng 5 2021 lúc 9:49

Với mọi số thực ta luôn có:

`(a-b)^2+(b-c)^2+(c-a)^2>=0`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2>=0`

`<=>2(a^2+b^2+c^2)>=2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=a^2+b^2+c^2+2(ab+bc+ca)`

`<=>3(a^2+b^2+c^2)>=(a+b+c)^2=4`

`<=>a^2+b^2+c^2>=4/3`

Dấu "=" xảy ra khi `a=b=c=2/3`

~Quang Anh Vũ~

Bình luận (0)
DT
Xem chi tiết
NL
8 tháng 5 2021 lúc 15:50

\(A=2017+a^2+b^2+c^2\ge2017+\dfrac{1}{3}\left(a+b+c\right)^2=2020\)

\(A_{min}=2020\) khi \(a=b=c=1\)

Bình luận (0)
VH
Xem chi tiết
TC
6 tháng 8 2021 lúc 15:28

undefined

Bình luận (0)
TN
Xem chi tiết
HT
Xem chi tiết
NL
27 tháng 7 2021 lúc 22:30

\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)

\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)

Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)

\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)

\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)

\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)

\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)

Bình luận (0)
H24
Xem chi tiết
NB
7 tháng 12 2020 lúc 19:22

bạn kiểm tra lại xem có sai đề không

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TC
Xem chi tiết
AH
14 tháng 10 2023 lúc 0:11

Lời giải:

Do $a\geq 4, b\geq 5, c\geq 6$

$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$

$\Rightarrow c\leq 7$

$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$

$\Rightarrow a< 9$

$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$

$\Rightarrow b< 8$

Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$

Suy ra:

$(a-4)(a-9)\leq 0$

$(b-5)(b-8)\leq 0$

$(c-6)(c-7)\leq 0$

$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$

$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$

$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$

Bình luận (0)
NH
Xem chi tiết
AH
29 tháng 3 2021 lúc 21:26

Lời giải:

Đặt $a+b+c=p; ab+bc+ac=q=1; abc=r$

$p,r\geq 0$

Áp dụng BĐT AM-GM: $p^2\geq 3q=3\Rightarrow p\geq \sqrt{3}$

$a,b,c\leq 1\Leftrightarrow (a-1)(b-1)(c-1)\leq 0$

$\Leftrightarrow p+r\leq 2\Rightarrow p\leq 2$

$P=\frac{(a+b+c)^2-2(ab+bc+ac)+3}{a+b+c-abc}=\frac{(a+b+c)^2+1}{a+b+c-abc}=\frac{p^2+1}{p-r}$

Ta sẽ cm $P\geq \frac{5}{2}$ hay $P_{\min}=\frac{5}{2}$

$\Leftrightarrow \frac{p^2+1}{p-r}\geq \frac{5}{2}$

$\Leftrightarrow 2p^2-5p+2+5r\geq 0(*)$

---------------------------

Thật vậy:

Áp dụng BĐT Schur thì:

$p^3+9r\geq 4p\Rightarrow 5r\geq \frac{20}{9}p-\frac{5}{9}p^3$

Khi đó:

$2p^2-5p+2+5r\geq 2p^2-5p+2+\frac{20}{9}p-\frac{5}{9}p^3=\frac{1}{9}(2-p)(5p^2-8p+9)\geq 0$ do $p\leq 2$ và $p\geq \sqrt{3}$

$\Rightarrow (*)$ được CM

$\Rightarrow P_{\min}=\frac{5}{2}$

Dấu "=" xảy ra khi $(a,b,c)=(1,1,0)$ và hoán vị

Bình luận (0)
H24
Xem chi tiết