TC

Cho ba số thực a>=4; b>=5; c>=6 thỏa mãn a^2+b^2+c^2 = 90. Tìm giá trị nhỏ nhất của biểu thức P = a+b+c

AH
14 tháng 10 2023 lúc 0:11

Lời giải:

Do $a\geq 4, b\geq 5, c\geq 6$

$\Rightarrow c^2=90-a^2-b^2\leq 90-4^2-5^2=49$

$\Rightarrow c\leq 7$

$a^2=90-b^2-c^2\leq 90-5^2-6^2=29< 81$

$\Rightarrow a< 9$

$b^2=90-a^2-c^2=90-4^2-6^2=38< 64$

$\Rightarrow b< 8$

Vậy $4\leq a< 9, 5\leq b< 8, 6\leq c\leq 7$

Suy ra:

$(a-4)(a-9)\leq 0$

$(b-5)(b-8)\leq 0$

$(c-6)(c-7)\leq 0$

$\Rightarrow (a-4)(a-9)+(b-5)(b-8)+(c-6)(c-7)\leq 0$

$\Rightarrow a^2+b^2+c^2+118\leq 13(a+b+c)$

$\Rightarrow 90+208\leq 13P$
$\Rightarrow P\geq 16$

Vậy $P_{\min}=16$. Giá trị này đạt tại $(a,b,c)=(4,5,7)$

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
TP
Xem chi tiết
TU
Xem chi tiết
EH
Xem chi tiết
DT
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết