tìm GTNN của /x-2015/+/x-2016/+/x-2017/
Tìm GTNN của biểu thức P= |x-2015| + |2016-x| + |x-2017|
bn lập bảng xét dấu rồi xét 4 khoảng nhé!!
Ta có: \( \left|x-2015\right|=\left|2015-x\right|\)
Ta lại có: \(\left|2015-x\right|+\left|x-2017\right|\ge\left|2015-x+x-2017\right|=2\)
\(\Rightarrow P\ge\left|2016-x\right|+2\)
Vì \(\left|2016-x\right|\ge0\)\(\Rightarrow\left|2016-x\right|+2\ge2\)
\(\Rightarrow P\ge2\)
Khi đó: \(\left|2016-x\right|=0\)\(\Rightarrow2016-x=0\)\(\Rightarrow x=2016\)
Vậy \(P_{min}=2\)\(\Leftrightarrow\)\(x=2016\)
Tìm GTNN của biểu thức P= |x-2015| + |2016-x| + |x-2017|
tìm GTNN của biểu thức sau:
P=/x-2015/+/x-2016/+/x-2017/
A=/x-1/+/x-2017/
Cho P=|x-2015|+|x-2016|+|x-2017|. Tìm GTNN của P và x với x là số nguyên
Áp dụng BĐT:`|A|+|B|>=|A+B|`
`=>|x-2017|+|x-2015|=|x-2017|+|2015-x|>=2`
Mà `|x-2016|>=0`
`=>P>=2`
Dấu "=" xảy ra khi $\begin{cases}2015 \leq x \leq 2017\\x=2016\end{cases}$
`<=>x=2016`
Tìm GTNN của M=2015+3(x^2+1)^2016+|x+y|^2017
Mình cần gấp lắm, giúp mình nha
Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)
=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)
\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)
Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)
Vậy gtnn của M = 2018 đạt tại x = y = 0.
Giúp mình bài này nha, tomorrow I have to nộp bài
Tìm GTNN của A biết A=|x-2015|+|x-2016|+|x-2017|
Ta có :
M = | x - 2015 | + | x - 2016 | + | x - 2017 |
M = | x - 2015 | + | x - 2016 | + | 2017 - x |
M = | x - 2015 | + | x - 2016 | + | 2017 - x | \(\ge\)| x - 2015 + 2017 - x | + | x - 2016 | = 2 + | x - 2016 | \(\ge\)2
Dấu = xảy ra \(\Leftrightarrow\)( x - 2015 )( 2017 - x )\(\ge\)0 ( loại ) và x - 2016 = 0 \(\Rightarrow\)x = 2016 ( chọn )
Vậy : Min M = 2 \(\Leftrightarrow\)x = 2016
P=|x-2015|+|x=2016|+|x-2017| tính gtnn
Tìm GTNN của biểu thức P= |x-2015| + |2016-x| + |x-2017|
Giải:
Ta có: \(P=\left|x-2015\right|+\left|2016-x\right|+\left|x-2017\right|\)
Vì \(\left\{{}\begin{matrix}\left|x-2015\right|\ge0\\\left|2016-x\right|\ge2016-x\\\left|x-2017\right|\ge x-2017\end{matrix}\right.\)
Nên \(P\ge2016-x+x-2017\)
\(P\ge-1\)
Vậy GTNN của P là -1
Tìm GTNN của biểu thức P=[x-2015]+[2016-x]+[x-2017]
cái [] là trị tuyệt đối nhé ai bt vt trị tuyệt đối chỉ vs
\(P=\left|x-2015\right|+\left|2016-x\right|+\left|2017-x\right|\)
\(\ge x-2015+0+2017-x=2\)
Dấu "=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2015\ge0\\2016-x=0\\2017-x\ge0\end{cases}}\Leftrightarrow x=2016\)
Vậy ..