Những câu hỏi liên quan
DA
Xem chi tiết
DA
30 tháng 4 2017 lúc 17:57

mình làm luôn 4 nghiệm nhé-đổi k thành m cho dễ nhé

Pt trở thành: t² + 2mt + 4 = 0 (*). 
Pt đã cho có 4 nghiệm phân biệt <=> pt (*) có 2 nghiệm phân biệt dương. => xảy ra đồng thời: delta’(t) > 0; S = x1 + x2 > 0; p = x1x2 > 0 <=> m² - 4 > 0; -2m > 0; 4 > 0 ( theo Vi-et) 
=> m < -2. 
=> pt đã cho có nghiệm x1,2 = +- căn t1; x3,4 = +- căn t2 
=> x1^4 = x2^4 = t1²; x3^4 = x4^4 = t2² 
=> x1^4 + x2^4 + x3^4 + x4^4 = 2(t1² + t2²) = 32 => t1² + t2² = 16. 
<=> (t1 + t2)² - 2t1t2 = 16 <=> (-2m)² - 2.4 = 16 <=> 4m² - 4 = 16 
<=> m² = 6, mà m < -2 => m = -(căn 6). 
vậy với m = -(căn 6) thì pt đã cho có 4 nghiệm phân biệt x1 ,x2, x3, x4 thỏa mãn x1^4 + x2^4 + x3^4 + x4^4 = 32. 

Bình luận (0)
DA
30 tháng 4 2017 lúc 17:58

mik lm 4 nghiệm nhé-đổi k thành m nữa

Pt trở thành: t² + 2mt + 4 = 0 (*). 
Pt đã cho có 4 nghiệm phân biệt <=> pt (*) có 2 nghiệm phân biệt dương. => xảy ra đồng thời: delta’(t) > 0; S = x1 + x2 > 0; p = x1x2 > 0 <=> m² - 4 > 0; -2m > 0; 4 > 0 ( theo Vi-et) 
=> m < -2. 
=> pt đã cho có nghiệm x1,2 = +- căn t1; x3,4 = +- căn t2 
=> x1^4 = x2^4 = t1²; x3^4 = x4^4 = t2² 
=> x1^4 + x2^4 + x3^4 + x4^4 = 2(t1² + t2²) = 32 => t1² + t2² = 16. 
<=> (t1 + t2)² - 2t1t2 = 16 <=> (-2m)² - 2.4 = 16 <=> 4m² - 4 = 16 
<=> m² = 6, mà m < -2 => m = -(căn 6). 
vậy với m = -(căn 6) thì pt đã cho có 4 nghiệm phân biệt x1 ,x2, x3, x4 thỏa mãn x1^4 + x2^4 + x3^4 + x4^4 = 32. 

Bình luận (0)
H24
Xem chi tiết
MY
26 tháng 12 2021 lúc 17:29

\(\left\{{}\begin{matrix}x^2+2xy-3y^2=-4\left(1\right)\\2x^2+xy+4y^2=5\left(2\right)\end{matrix}\right.\)\(với\)\(y=0\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}x^2=-4\\2x^2=5\end{matrix}\right.\)\(\left(loại\right)\)

\(y\ne0\) \(đặt:x=t.y\Rightarrow hpt\Leftrightarrow\left\{{}\begin{matrix}t^2y^2+2ty^2-3y^2=-4\left(3\right)\\2t^2y^2+ty^2+4y^2=5\left(4\right)\end{matrix}\right.\)

\(\Leftrightarrow5t^2y^2+10ty^2-15y^2=-8t^2y^2-4ty^2-16y^2\)

\(\Leftrightarrow13t^2y^2+14ty^2+y^2=0\)

\(\Leftrightarrow13t^2+14t+1=0\Leftrightarrow\left[{}\begin{matrix}t=-\dfrac{1}{13}\\t=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{13}y\left(5\right)\\x=-y\left(6\right)\end{matrix}\right.\)

\(thay\left(5\right)và\left(6\right)\) \(lên\left(1\right)hoặc\left(2\right)\Rightarrow\left(x;y\right)=\left\{\left(1;-1\right);\left(-1;1\right);\left(-\dfrac{1}{\sqrt{133}};\dfrac{13}{\sqrt{133}}\right)\right\}\)

\(pt:x^4-4x^3+x^2+6x+m+2=0\)

\(\Leftrightarrow x^4-4x^3+4x^2-3x^2+6x+m+2=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2-3\left(x^2-2x\right)+m+2=0\left(1\right)\)

\(đặt:x^2-2x=t\ge-1\)

\(\Rightarrow\left(1\right)\Leftrightarrow t^2-3t=-m-2\)

\(xét:f\left(t\right)=t^2-3t\) \(trên[-1;+\text{∞})\) \(và:y=-m-2\)

\(\Rightarrow f\left(-1\right)=4\)

\(f\left(-\dfrac{b}{2a}\right)=-\dfrac{9}{4}\)

\(\left(1\right)\) \(có\) \(3\) \(ngo\) \(pb\Leftrightarrow-m-2=4\Leftrightarrow m=-6\)

Bình luận (0)
MB
Xem chi tiết
NT
26 tháng 12 2023 lúc 13:07

loading...

Bình luận (0)
KT
Xem chi tiết
NT
28 tháng 2 2022 lúc 22:21

a: \(\text{Δ}=\left(-4\right)^2-4\cdot2\cdot5\left(m-1\right)\)

\(=16-40\left(m-1\right)\)

\(=16-40m+40\)

=-40m+56

Để phương trình có hai nghiệm phân biệt nhỏ hơn 3 thì

\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}< 6\end{matrix}\right.\Leftrightarrow-40m>-56\)

hay m<7/5

b: Để phương trình có hai nghiệm phân biệt lớn hơn 3 thì

\(\left\{{}\begin{matrix}-40m+56>0\\\dfrac{4}{2}>6\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Bình luận (0)
SD
Xem chi tiết
LB
Xem chi tiết
AH
5 tháng 3 2021 lúc 21:48

Lời giải:

Xin chỉnh sửa lại chút, tìm $k$, chứ không phải tìm $m$.

PT $\Leftrightarrow x^2-(6k-2)=0\Leftrightarrow x^2=6k-2$

Để pt có 2 nghiệm phân biệt thì $6k-2>0\Leftrightarrow k>\frac{1}{3}$

Khi đó:

$x_1=\sqrt{6k-2}$ và $x_2=-\sqrt{6k-2}$

Để $3x_1-x_2=2$

$\Leftrightarrow 3\sqrt{6k-2}+\sqrt{6k-2}=2$

$\Leftrightarrow \sqrt{6k-2}=\frac{1}{2}\Rightarrow k=\frac{3}{8}$

Bình luận (3)
TN
Xem chi tiết
LK
29 tháng 3 2022 lúc 13:50

a) 2x2 - 6x -1 = 0 

delta phẩy = 9 + 2 = 11 = (\(\sqrt{11}\))2 

x1 = \(\dfrac{3+\sqrt{11}}{2}\)

x2 = \(\dfrac{3-\sqrt{11}}{2}\)

b) xét delta phẩy có :

9 - 2.(2m-5) = 19 - 4m 

+) điều kiện để phương trình vô nghiệm là 19 - 4m < 0 => m > \(\dfrac{19}{4}\)

+) điều kiện để phương trình có nghiệm kép là 19 - 4m = 0 => m = \(\dfrac{19}{4}\)

+) điều kiện để phương trình có 2 nghiệm phân biệt là 19 - 4m > 0 

=> m < \(\dfrac{19}{4}\)

Bình luận (0)
GJ
Xem chi tiết
NL
24 tháng 12 2020 lúc 13:44

1.

\(\Leftrightarrow6x^2-12x+7-6\sqrt{6x^2-12x+7}-7=0\)

Đặt \(\sqrt{6x^2-12x+7}=t>0\)

\(\Rightarrow t^2-6t-7=0\Rightarrow\left[{}\begin{matrix}t=-1\left(loại\right)\\t=7\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{6x^2-12x+7}=7\)

\(\Leftrightarrow6x^2-12x+7=49\Rightarrow x=1\pm2\sqrt{2}\)

2.

\(\Delta'=\left(m+1\right)^2-m^2-3=2m-2>0\Rightarrow m>1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+3\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-2x_1x_2=2x_1x_2+8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2-8=0\)

\(\Leftrightarrow4\left(m+1\right)^2-4\left(m^2+3\right)-8=0\)

\(\Leftrightarrow2m-4=0\Rightarrow m=2\)

Bình luận (0)
NT
Xem chi tiết