Những câu hỏi liên quan
DH
Xem chi tiết
TS
Xem chi tiết
NA
31 tháng 3 2023 lúc 21:54

Đề có lẽ là "Tìm maxP" chứ nhỉ?

Vì a,b là các số thực dương nên:

\(P=\dfrac{ab}{a^2+2b^2}=\dfrac{1}{\dfrac{a}{b}+\dfrac{2b}{a}}\)

Ta có \(2b\ge ab+4\Rightarrow\dfrac{2b}{a}\ge b+\dfrac{4}{a}\)

Áp dụng BĐT Cauchy ta có \(b+\dfrac{4}{a}\ge4\sqrt{\dfrac{b}{a}}\)

\(\Rightarrow\dfrac{2b}{a}\ge4\sqrt{\dfrac{b}{a}}\Leftrightarrow\left(\dfrac{b}{a}-2\sqrt{\dfrac{b}{a}}+1\right)\ge1\)

\(\Leftrightarrow\left(\sqrt{\dfrac{b}{a}}-1\right)^2\ge1\Leftrightarrow\sqrt{\dfrac{b}{a}}-1\ge1\Leftrightarrow\dfrac{b}{a}\ge4\).

Đặt \(x=\dfrac{b}{a}\Rightarrow x\ge4\). Ta có: \(\dfrac{1}{P}=2x+\dfrac{1}{x}=\left(\dfrac{x}{16}+\dfrac{1}{x}\right)+\dfrac{31x}{16}\ge2\sqrt{\dfrac{x}{16}.\dfrac{1}{x}}+\dfrac{15.4}{16}=\dfrac{33}{4}\)

\(\Leftrightarrow P\le\dfrac{4}{33}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\dfrac{b}{a}=4\\2b=ab+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\a=1\end{matrix}\right.\)

Vậy \(MaxP=\dfrac{4}{33}\).

 

Bình luận (3)
DH
Xem chi tiết
DH
Xem chi tiết
DH
Xem chi tiết
DT
Xem chi tiết
KT
2 tháng 8 2018 lúc 21:27

\(P=2a+3b+\frac{1}{a}+\frac{4}{b}=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)

   \(\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)

Dấu "=" xảy ra <=>  \(a=1;\)\(b=2\)

Vậy MIN P = 11  Khi a = 1;   b = 2

Bình luận (0)
PD
2 tháng 8 2018 lúc 21:32

Bài này là BĐT cosi

\(P=2a+3b+\frac{1}{a}+\frac{4}{b}\)

\(P=a+2b+\left(a+\frac{1}{a}\right)+\left(b+\frac{4}{b}\right)\)

\(P\ge5+2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{4}{b}}=5+2+4=11\)

Dấu "=" xảy ra khi a = 1/a <=> a = 1 ; b = 4/b <=> b = 2

Bình luận (0)
DT
2 tháng 8 2018 lúc 21:33

Tại sao lại >= 5 ± √a.1/a vậy

Bình luận (0)
DH
Xem chi tiết
DH
Xem chi tiết
NK
Xem chi tiết
NL
5 tháng 1 2024 lúc 6:09

\(P=3log_{a^2b}a-\dfrac{3}{4}log_a2.log_2\left(\dfrac{a}{b}\right)\)

\(=\dfrac{3}{log_a\left(a^2b\right)}-\dfrac{3}{4.log_2a}.\left(log_2a-log_2b\right)\)

\(=\dfrac{3}{log_aa^2+log_ab}-\dfrac{3}{4.log_2a}.log_2a+\dfrac{3}{4}.\dfrac{log_2b}{log_2a}\)

\(=\dfrac{3}{2+3}-\dfrac{3}{4}+\dfrac{3}{4}.log_ab=\dfrac{3}{5}-\dfrac{3}{4}+\dfrac{9}{4}=\dfrac{21}{10}\)

Bình luận (0)
DH
Xem chi tiết