cho 2 số thực dương x,,y thõa mãn\(x+y\ge10\). tìm Min của \(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y,z là các số dương thỏa mãn: \(x+y\ge10\). Tìm GTNN của \(A=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
<=> A = (x+y) + ( 5/x + 5/y) +( 25/x + x)
Xét:
+) x+y >/ 10
+) 5/x + 5/y = 5(1/x+1/y) >/ 5.4/x+y = 2 <=> x=y
+) 25/x + x >/ 2. căn 25/x.x =10
=> A >/ 10+2+10 = 22 <=> (x;y)= (5;5).
\(A=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\dfrac{4}{5}\left(x+y\right)\)
\(A\ge2\sqrt{\dfrac{180x}{5x}}+2\sqrt{\dfrac{5y}{5y}}+\dfrac{4}{5}.10=22\)
\(A_{min}=22\) khi \(x=y=5\)
cho 2 số thực dương x,y thõa mãn \(x+y\ge10\)
tìm giá trị nhỏ nhất của biểu thức \(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
Cho 2 số thực dương x,y thỏa mãn \(x+y\ge10\).
Tìm Min của biểu thức sau: \(P=2x+y+\frac{30}{x}+\frac{6}{y}\)
Câu hỏi: Cho 2 số thực dương x, y thõa mãn \(x+y\ge10\). tìm Min của \(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
Bài giải:
\(P=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{5}{y}+\dfrac{y}{5}\right)+\dfrac{4}{5}\left(x+y\right)\ge12+2+8=22\)
PS: Đây nhé Mai Diễm My
Cho 2 số thực dương x,y yhoar mãn x+y ≥ 10
tìm GTNN của P= 2x + y +\(\dfrac{30}{x}\)+\(\dfrac{5}{y}\)
\(P=\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\ge\dfrac{4}{5}.10+2\sqrt{\dfrac{180x}{5x}}+2\sqrt{\dfrac{5y}{5y}}=22\)
\(P_{min}=22\) khi \(x=y=5\)
cho hai số thực dương thỏa mãn: \(x+y\ge10\)
tìm giá trị nhỏ nhât của biểu thức sau:\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
Cho 2 số thực dương \(x,y\) thỏa mãn \(x+y+xy=3\)
Tìm Min \(\dfrac{x\sqrt{x}}{\sqrt{x+3y}}+\dfrac{y\sqrt{y}}{\sqrt{y+3x}}\)
cho hai số thực dương x,y thỏa mãn \(x+y\ge10\). Tìm giá trị nhỏ nhất của biểu thức sau:\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
cho x,y là các số thực dương thỏa mãn: 1≤x≤2, 1≤y≤2. Tìm giá trị nhỏ nhất.
P=\(\dfrac{x+2y}{x^2+3y+5}+\dfrac{y+2x}{y^2+3x+5}+\dfrac{1}{4\left(x+y-1\right)}\)
Do \(1\le x\le2\Rightarrow\left(x-1\right)\left(x-2\right)\le0\)
\(\Leftrightarrow x^2+2\le3x\)
Hoàn toàn tương tự ta có \(y^2+2\le3y\)
Do đó: \(P\ge\dfrac{x+2y}{3x+3y+3}+\dfrac{2x+y}{3x+3y+3}+\dfrac{1}{4\left(x+y-1\right)}\)
\(P\ge\dfrac{x+y}{x+y+1}+\dfrac{1}{4\left(x+y-1\right)}\)
Đặt \(a=x+y-1\Rightarrow1\le a\le3\)
\(\Rightarrow P\ge f\left(a\right)=\dfrac{a+1}{a+2}+\dfrac{1}{4a}\)
\(f'\left(a\right)=\dfrac{3a^2-4a-4}{4a^2\left(a+2\right)^2}=\dfrac{\left(a-2\right)\left(3a+2\right)}{4a^2\left(a+2\right)^2}=0\Rightarrow a=2\)
\(f\left(1\right)=\dfrac{11}{12}\) ; \(f\left(2\right)=\dfrac{7}{8}\) ; \(f\left(3\right)=\dfrac{53}{60}\)
\(\Rightarrow f\left(a\right)\ge\dfrac{7}{8}\Rightarrow P_{min}=\dfrac{7}{8}\) khi \(\left(x;y\right)=\left(1;2\right);\left(2;1\right)\)