55. Chứng minh đẳng thức: \(\dfrac{\left(x-y\right)^7-x^7+y^7}{\left(x-y\right)^5-x^5+y^5}=\dfrac{7}{5}\left(x^2-xy+y^2\right)\)
Tính :
\(\left(x^2+\dfrac{2}{5}y\right)\times\left(x^2-\dfrac{2}{5}y\right)\)
Thực hiện phép tính :
a, \(\left(x^2+\dfrac{2}{5}y\right)\cdot\left(x^2-\dfrac{2}{5}y\right)\)
b,\(\left(3x-2y\right)\cdot\left(3x+2y\right)\cdot\left(9x^2+4y^2\right)\)
Cho 3 số x; y ; z là 3 số thỏa mạn: \(xyz=1;x+y+z=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)
tính giá trị biểu thức : \(P=\left(x^{19}-1\right)\left(y^5-1\right)\left(z^{2016}-1\right)\)
cho x,y,z là các số thực dương và\(x\cdot y\cdot z=1\), tìm giá trị lớn nhất cúa P biết
\(P=\dfrac{1}{\left(x+2\right)^2+y^2+2xy}+\dfrac{1}{\left(y+2\right)^2+z^2+2yz}+\dfrac{1}{\left(z+2\right)^2+x^2+2xz}\)
1. tính
a) \(\left(\dfrac{2}{3}x-\dfrac{3}{2}y\right)^2\)
b) \(\left(\dfrac{1}{2}x^2+\dfrac{1}{3}\right)^2\)
c) \(\left(x+\dfrac{1}{5}y^2\right)\left(x-\dfrac{1}{5}y^2\right)\)
d) \(\left(\dfrac{1}{2}x-2y\right)^3\)
e) \(\left(-\dfrac{1}{2}xy^2+x\right)^3\)
f) \(27x^3-8y^3\)
g) 4(2x - 3y) - 4 - (2x-3y)2
2. rút gọn
a) \(2m\left(5m+2\right)+\left(2m-3\right)\left(3m-1\right)\)
b) \(\left(2x+4\right)\left(8x-3\right)-\left(4x+1\right)^2\)
c) \(\left(7y-2\right)^2-\left(7y+1\right)\left(7y-1\right)\)
d) \(\left(a+2\right)^3-a\left(a-3\right)^2\)
3. c/m các biểu thức sau ko phụ thuộc vào biến x,y
a) \(\left(2x-5\right)\left(2x+5\right)-\left(2x-3\right)^2-12x\)
b) \(\left(2y-1\right)^3-2y\left(2y-3\right)^2-6y\left(2y-2\right)\)
c) \(\left(x+3\right)\left(x^2-3x+9\right)-\left(20+x^3\right)\)
d) \(3y\left(-3y-2\right)^2-\left(3y-1\right)\left(9y^2+3y+1\right)-\left(-6y-1\right)^2\)
4. Tìm x
a) \(\left(2x+5\right)\left(2x-7\right)-\left(-4x-3\right)^2=16\)
b) \(\left(8x^2+3\right)\left(8x^2-3\right)-\left(8x^2-1\right)^2=22\)
c) \(49x^2+14x+1=0\)
d) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
5. c/m biểu thức luôn dương:
a) \(A=16x^2+8x+3\)
b) \(B=y^2-5y+8\)
c) C= \(2x^2-2x+2\)
d) \(D=9x^2-6x+25y^2+10y+4\)
6. Tìm GTLN và GTNN của các biểu thức sau
a) \(M=x^2+6x-1\)
b) \(N=10y-5y^2-3\)
7. thu gọn
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^3+1\right)...\left(2^{32}+1\right)-2^{64}\)
b) \(\left(5+3\right)\left(5^2+3^2\right)\left(5^4+3^4\right)...\left(5^{\text{64}}+3^{64}\right)+\dfrac{5^{128}-3^{128}}{2}\)
Cho biểu thức A=\(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) Rút gọn A
b) Tính các cặp gia trị nguyên (x.y)để A=-3
Cho biểu thức A=\(\dfrac{x^2}{\left(x+y\right)\left(1-y\right)}-\dfrac{y^2}{\left(x+y\right)\left(1+x\right)}-\dfrac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\)
a) Rút gọn A
b) Tính các cặp gia trị nguyên (x.y)để A=-3
giải pt sau
g) 11+8x-3=5x-3+x
h)4-2x+15=9x+4-2x
g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)
h)\(\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)
i)\(\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)
k) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{xx+7}{15}\)
n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)
p)\(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-x\)
q)\(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)