\(\dfrac{2}{1\cdot4}+\dfrac{2}{4\cdot7}+\dfrac{2}{7\cdot10}+\dfrac{2}{49\cdot50}\)
Tìm x
\(\dfrac{2}{1\cdot4}x+\dfrac{2}{4\cdot7}x+\dfrac{2}{7\cdot10}x+....+\dfrac{2}{31\cdot34}x=10\)
\(\dfrac{2}{1.4}x+\dfrac{2}{4.7}x+\dfrac{2}{7.10}x+...+\dfrac{2}{31.34}x=10\)
\(=>1,5.\left(\dfrac{2}{1.4}x+\dfrac{2}{4.7}x+\dfrac{2}{7.10}x+...+\dfrac{2}{31.34}x\right)=15\)
\(=>\dfrac{3}{1.4}x+\dfrac{3}{4.7}x+\dfrac{3}{7.10}x+...+\dfrac{3}{31.34}x=15\)
\(=>x\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{31.34}\right)=15\)
\(=>x\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=15\)
\(=>x\left(1-\dfrac{1}{34}\right)=15\)
\(=>\dfrac{33}{34}x=15\)
\(=>x=\dfrac{170}{11}\)
Chứng minh
\(\dfrac{12}{1\cdot4\cdot7}+\dfrac{12}{4\cdot7\cdot10}+\dfrac{12}{7\cdot10\cdot13}+...+\dfrac{12}{54\cdot57\cdot60}< \dfrac{1}{2}\)
\(\dfrac{12}{1.4.7}+\dfrac{12}{4.7.10}+\dfrac{12}{7.10.13}+...+\dfrac{12}{54.57.60}\)
\(=2\left(\dfrac{1}{1.4}-\dfrac{1}{4.7}+\dfrac{1}{4.7}-\dfrac{1}{7.10}+\dfrac{1}{7.10}-\dfrac{1}{10.13}+...+\dfrac{1}{54.57}-\dfrac{1}{57.60}\right)\)\(=2\left(\dfrac{1}{1.4}-\dfrac{1}{57.60}\right)\)
\(=2\left(\dfrac{1}{4}-\dfrac{1}{57.60}\right)=\dfrac{1}{2}-\dfrac{1}{2.57.60}< \dfrac{1}{2}\left(đpcm\right)\)
1)A=\(\dfrac{5}{1\cdot2}+\dfrac{5}{2\cdot3}+.....+\dfrac{5}{99\cdot100}\)
C=\(1\cdot2\cdot3+2\cdot3\cdot4++3\cdot4\cdot5+4\cdot5\cdot6+5\cdot6\cdot7+6\cdot7\cdot8+7\cdot8\cdot9+8\cdot9\cdot10\)
D=\(1^2+2^2+3^2+...+99^2+100^2\)
a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=5\left(1-\dfrac{1}{100}\right)\)
\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)
b, \(C=1.2.3+2.3.4+...+8.9.10\)
\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)
\(C=\dfrac{8.9.10.11}{4}=1980.\)
c, https://hoc24.vn/hoi-dap/question/384591.html
Câu này bạn vào đây mình đã giải câu tương tự nhé.
\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{20}\)
\(B=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+\dfrac{2}{4\cdot5\cdot6}+\dfrac{2}{5\cdot6\cdot7}+\dfrac{2}{6\cdot7\cdot8}\)
\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{6.7}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{56}=\dfrac{27}{56}\)
Cho S=\(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{40\cdot43}+\dfrac{3}{43\cdot46}\)
Hãy chứng minh rằng S<1
Ta có :
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+..............+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...............+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)
\(S=1-\dfrac{1}{46}< 1\)
\(\Rightarrow S< 1\rightarrowđpcm\)
\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{40.43}+\dfrac{3}{43.46}\)
\(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{40.43}+\dfrac{1}{43.46}\)
\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}+\dfrac{1}{43}-\dfrac{1}{46}\)
\(S=1-\dfrac{1}{46}=\dfrac{45}{46}\)
\(\dfrac{45}{46}< 1\)
=> \(S< 1\)
CHo `M` `=` \(\dfrac{\left(\dfrac{3}{1\cdot4}+\dfrac{3}{2\cdot6}+\dfrac{3}{3\cdot8}+\dfrac{3}{4\cdot10}+...+\dfrac{3}{49\cdot100}\right)}{\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\left(1-\dfrac{1}{6}\right)\cdot\cdot\cdot\left(1-\dfrac{1}{100}\right)}\)
Chứng `M` có giá trị là 1 số nguyên
Hép - mi - pờ - li
A=\(\dfrac{1}{1\cdot2}\)+\(\dfrac{1}{2\cdot3}\)+\(\dfrac{1}{3\cdot4}\)+...+\(\dfrac{1}{49\cdot50}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
Ta có :
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...........+\dfrac{1}{49.50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...........+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=\dfrac{1}{1}-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
~ Chúc bn học tốt ~
*Sóc* Nhí *Nhảnh *
11⋅2" id="MathJax-Element-1-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">12⋅3" id="MathJax-Element-2-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">+13⋅4" id="MathJax-Element-3-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">+...+149⋅50" id="MathJax-Element-4-Frame" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:20.34px; font-style:normal; font-weight:normal; letter-spacing:normal; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; text-align:left; text-indent:0px; text-transform:none; white-space:nowrap; word-spacing:normal; word-wrap:normal" tabindex="0">
+\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{49}-\dfrac{1}{50}\)
\(A=1-\dfrac{1}{50}\)
\(A=\dfrac{49}{50}\)
Chứng minh rằng :
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{49\cdot50}=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\\ =\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\\ =1+\dfrac{1}{2}+...+\dfrac{1}{50}-1-\dfrac{1}{2}-\dfrac{1}{3}-...-\dfrac{1}{25}\\ =\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
Bài 1: Tìm x biết
\(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+\dfrac{1}{13\cdot16}\cdot x=\dfrac{3}{8}\)
Bài 2: Tìm các phân số có mẫu là 20 lớn hơn \(\dfrac{7}{15}\) nhỏ hơn \(\dfrac{8}{15}\)
Bài 3: So sánh A và B
A = \(\dfrac{2}{537}+\dfrac{4}{541}\) B = \(\dfrac{2}{541}+\dfrac{4}{537}\)
A = \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{13.16}\)
\(A=1-\left(\dfrac{1}{4}+\dfrac{1}{4}\right)-\left(\dfrac{1}{7}+\dfrac{1}{7}\right)-\dfrac{1}{10}-\dfrac{1}{13}-\dfrac{1}{16}\)
\(A=1-\dfrac{1}{10}-\dfrac{1}{13}-\dfrac{1}{16}\)
(13 - 10 = 3 ; 16 - 13 = 3)
\(3A=1-\dfrac{1}{16}\)
\(=\dfrac{15}{16}\)
Vậy ... tự tìm a đi! Lười quá!
Bài 2: Dễ ; tự làm
Bài3: Áp dụng tính chất phép cộng ta có:
a + b = b + a
=> A và B có phép tính giống nhau chỉ đổi chỗ
Không mất công tính.
Ta có thể kết luận phép tính trên bằng nhau