5x + 1 = 25. Tìm x
tìm x biết 25(x+3)^2+(1-5x)(1+5x)=0
\(25\left(x+3\right)^2+\left(1-5x\right)\left(1+5x\right)=0\)
\(25\left(x^2+6x+9\right)+1-25x^2=0\)
\(25x^2+150x+225+1-25x^2=0\)
\(150x=-226\)
\(x=-\frac{113}{75}\)
25 ( x + 3 )2 + ( 1 - 5x )( 1 + 5x ) = 0
25 ( x2 + 6x + 9 ) + 1 + 5x - 5x - 25x2 = 0
25x2 + 150x + 225 + 1 + 5x - 5x - 25x2 = 0
150x + 226 = 0
150x = -226
x = -226/150
Tìm số tự nhiên x, biết:
a) 5 x : 25 = 25 ;
b) 5 x + 1 : 5 = 5 4 ;
c) 4 2 x - 1 : 4 = 16
a) Ta có : 5 x : 5 2 = 5 2 nên x = 4,
b) Ta có: 5 x + 1 : 5 = 5 4 nên x = 4.
c) Ta có : 4 2 x - 1 : 4 = 4 2 nên x = 2.
Tìm x:
1, (5x-1)(5x+1)=25^2-7x+15
2,(3x-5)(x+1)-(3x-1)(x+1)=x-4
1) \(\left(5x-1\right)\left(5x+1\right)=25x^2-7x+15\)
\(\Leftrightarrow25x^2-1=25x^2-7x+15\)
\(\Leftrightarrow7x=16\Leftrightarrow x=\dfrac{16}{7}\)
2) \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Leftrightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Leftrightarrow5x=0\Leftrightarrow x=0\)
TÌM X BIẾT :
a/ 3x ( 3x -1 ) - ( 3x + 1 ) ( 3x - 1 ) = 0
b/ \(x^2\) - 5x + 25 - 5x = 0
KHÔNG BỎ BƯỚC Ạ !
a: Ta có: \(3x\left(3x-1\right)-\left(3x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow9x^2-3x-9x^2+1=0\)
\(\Leftrightarrow3x=1\)
hay \(x=\dfrac{1}{3}\)
b: Ta có: \(x^2-5x+25-5x=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x-5=0\)
hay x=5
(3x-1)/(40-5x)=(25-3x)/(5x-34)
Tìm x
tìm x: 3/5x-25/4=1/2:x+5/4
\(\dfrac{3}{5}x-\dfrac{25}{4}=\dfrac{1}{2}:x+\dfrac{5}{4}\)
=>\(\dfrac{3}{5}x-\dfrac{25}{4}-\dfrac{1}{2x}+\dfrac{5}{4}\)
=>\(\dfrac{3}{5}x-\dfrac{1}{2x}=\dfrac{30}{4}\)
=>\(\dfrac{3x}{5}-\dfrac{1}{2x}=\dfrac{30}{4}\)
=>\(\dfrac{6x^2-5}{10x}=\dfrac{30}{4}\)
=>\(6x^2-5=10x\cdot\dfrac{30}{4}=5x\cdot15=75x\)
=>\(6x^2-75x-5=0\)
=>\(x=\dfrac{75\pm\sqrt{5745}}{12}\)
Tìm x thuộc Z, biết :
(x+1)+(x+3)+....+(x+9)=0
Mình giải ra thế này :
5x + 25 = 0
5x = 0 - 25
5x = -25
x = -25 : 5
x = -5
Nhưng thấy nói các đó kh tính được số lớn -_- Các bạn giải khác được kh? Giúp mình mình tick~
Ừ nhưng thấy kêu kh tìm được số lớn. Bạn có cách giải khác kh?
C2:
Số số hạng của tổng là: [(x + 9) - (x + 1)]:2 + 1 = 5 (số)
Áp dụng cách tính tổng các số cách đều ta có:
[(x + 9) + (x + 1)].5 : 2 = \(\frac{5\left(2x+10\right)}{2}=0\)
=> 5(2x + 10) = 0
=> 2x + 10 = 0
=> 2x = -10
=> x = -5
Tìm số tự nhiên x, biết
a, 2 x : 4 = 32
b, 3 x : 3 2 = 243
c, 256 : 4 x = 4 2
d, 5 x : 25 = 25
e, 5 x + 1 : 5 = 5 4
f, 4 2 x - 1 : 4 = 16
a) Ta có : 2 x : 2 2 = 2 5 nên x = 7.
b) Ta có: 3 x : 3 2 = 3 5 nên x = 7.
c) Ta có : 4 4 : 4 x = 4 2 nên x = 2.
d) Ta có : 5 x : 5 2 = 5 2 nên x = 4,
e) Ta có: 5 x + 1 : 5 = 5 4 nên x = 4.
f) Ta có : 4 2 x - 1 : 4 = 4 2 nên x = 2
Tìm x, biết
x=7/25 + -1/5
x=5/11 + 4/-9
5/9 - x/-1=-1/3
\(x=\dfrac{7}{25}+\dfrac{-1}{5}=\dfrac{7}{25}-\dfrac{1}{5}=\dfrac{2}{25}.\\ x=\dfrac{5}{11}+\dfrac{4}{-9}=\dfrac{5}{11}-\dfrac{4}{9}=\dfrac{1}{99}.\\ \dfrac{5}{9}-\dfrac{x}{-1}=\dfrac{-1}{3}\Leftrightarrow\dfrac{5}{9}+x=-\dfrac{1}{3}.\Leftrightarrow x=-\dfrac{8}{9}.\)
\(x=\dfrac{7}{25}+-\dfrac{1}{5}=>\dfrac{7}{25}+-\dfrac{5}{25}=>x=\dfrac{2}{25}\)
\(x=\dfrac{5}{11}+\dfrac{4}{-9}=>\dfrac{-45}{-99}+\dfrac{44}{-99}=>x=\dfrac{-1}{-99}=\dfrac{1}{99}\)
\(\dfrac{5}{9}-\dfrac{x}{-1}=-\dfrac{1}{3}=>-\dfrac{1}{3}-\dfrac{5}{9}=>\dfrac{x}{-1}=-\dfrac{8}{9}=>x=-\dfrac{8}{9}\)
\(x=\dfrac{7}{25}+\dfrac{-1}{5}\\ \Rightarrow x=\dfrac{7}{25}+\dfrac{-5}{25}\\ \Rightarrow x=\dfrac{2}{25}\\ x=\dfrac{5}{11}+\dfrac{4}{-9}\\ \Rightarrow x=\dfrac{-45}{-99}+\dfrac{44}{-99}\\ \Rightarrow x=\dfrac{45}{99}+\dfrac{44}{99}\\ \Rightarrow x=\dfrac{95}{99}\\ \dfrac{5}{9}-\dfrac{x}{-1}=\dfrac{-1}{3}\\ \Rightarrow\dfrac{x}{-1}=\dfrac{5}{9}-\dfrac{-1}{3}\\ \Rightarrow\dfrac{x}{-1}=\dfrac{5}{9}-\dfrac{-3}{9}\\ \Rightarrow\dfrac{x}{-1}=\dfrac{8}{9}\Rightarrow x\cdot9=-1\cdot8=-8\\ \Rightarrow x\cdot9=-8\\ \Rightarrow x=\dfrac{-8}{9}\)
Bài 1:
a. Tính:
1+22+23+....+29+210
b. Tìm x biết:
a] 60 - 3 . [x-1] = 23. 3
b] [3x - 2]3 = 2 . 25
c] 5x+1 - 5x = 500
d] x2 = x4
a) Đặt: \(A=1+2^2+2^3+...+2^{10}\)
\(\Rightarrow2A=2\left(1+2^2+2^3+...+2^9+2^{10}\right)\)
\(\Rightarrow2A=2+2^3+2^4+...+2^{10}+2^{11}\)
\(\Rightarrow2A-A=\left(2+2^3+2^4+...+2^{10}+2^{11}\right)-\left(1+2^2+2^3+...+2^{10}\right)\)
\(\Rightarrow A=\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2-1\right)+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=0+0+...+1+\left(2^{11}-2^2\right)\)
\(\Rightarrow A=1+2^{11}-2^2=1+2048-4=2045\)
Vậy: \(1+2^2+2^3+...+2^{10}=2045\)
b)
a] \(60-3\left(x-1\right)=2^3\cdot3\)
\(\Rightarrow60-3\left(x-1\right)=24\)
\(\Rightarrow3\left(x-1\right)=36\)
\(\Rightarrow x-1=12\)
\(\Rightarrow x=13\)
b] \(\left(3x-2\right)^3=2\cdot2^5\)
\(\Rightarrow\left(3x-2\right)^3=2^6\)
\(\Rightarrow\left(3x-2\right)^3=\left(2^2\right)^3\)
\(\Rightarrow3x-2=2^2\)
\(\Rightarrow3x=6\)
\(x=2\)
c] \(5^{x+1}-5^x=500\)
\(\Rightarrow5^x\left(5-1\right)=500\)
\(\Rightarrow5^x\cdot4=500\)
\(\Rightarrow5^x=125\)
\(\Rightarrow5^x=5^3\)
\(\Rightarrow x=3\)
d] \(x^2=x^4\)
\(\Rightarrow x=x^2\)
\(\Rightarrow x-x^2=0\)
\(\Rightarrow x\left(1-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\1-x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)