Những câu hỏi liên quan
MT
Xem chi tiết
NT
18 tháng 11 2022 lúc 14:19

\(=5\left(x^2-\dfrac{4}{5}xy+\dfrac{4}{25}y^2\right)+\dfrac{1}{5}y^2-2y+2023\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y^2-10y+25\right)+2018\)

\(=5\left(x-\dfrac{2}{5}y\right)^2+\dfrac{1}{5}\left(y-5\right)^2+2018>=2018\)

Dấu = xảy ra khi y=5 và x=2/5y=2

Bình luận (0)
LP
Xem chi tiết
NT
Xem chi tiết
NQ
15 tháng 1 2018 lúc 20:36

2A = 4x^2+6y^2+8xy-16x-4y+36

     = [(4x^2+8xy+4y^2)-2.(2x+2y).4+16]+(2y^2+12y+18)+2

     = (2x+2y-4)^2+2.(y+3)^2+2 >= 2

=> A >= 1

Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 và y=-3

Vậy GTNN của A = 1 <=> x=5 và y=-3

Tk mk nha

Bình luận (0)
TC
Xem chi tiết
NK
Xem chi tiết
TC
13 tháng 11 2021 lúc 17:57

a)

Ta có:

\(A=x^2-2x-1=x^2-2x+1-2=\left(x-1\right)^2-2\)

\(\ge0-2=-2\)

Vậy \(A_{min}=-2\), đạt được khi và chỉ khi \(x-1=0\Leftrightarrow x=1\)

b)\(B=4x^2+4x+8=4x^2+4x+1+7\)

\(=\left(2x+1\right)^2+7\ge0+7=7\)

Vậy \(B_{min}=7\), đạt được khi và chỉ khi \(2x+1=0\Leftrightarrow x=\dfrac{-1}{2}\)

Bình luận (0)
TC
13 tháng 11 2021 lúc 18:10

c)

Ta có:

\(C=3x-x^2+2=2-\left(x^2-3x\right)\)

\(=2+\dfrac{9}{4}-\left(x^2-2x.\dfrac{3}{2}+\dfrac{9}{4}\right)\)

\(=\dfrac{17}{4}-\left(x-\dfrac{3}{2}\right)^2\le\dfrac{17}{4}-0=\dfrac{17}{4}\)

Vậy \(C_{max}=\dfrac{17}{4}\), đạt được khi và chỉ khi \(x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

d) Ta có:

\(D=-x^2-5x=-\left(x^2+5x\right)=\dfrac{25}{4}-\left(x^2+2x.\dfrac{5}{2}+\dfrac{25}{4}\right)\)

\(=\dfrac{25}{4}-\left(x+\dfrac{5}{2}\right)^2\le\dfrac{25}{4}-0=\dfrac{25}{4}\)

Vậy \(D_{max}=\dfrac{25}{4}\), đạt được khi và chỉ khi \(x+\dfrac{5}{2}=0\Leftrightarrow x=-\dfrac{5}{2}\)

e) Ta có:

\(E=x^2-4xy+5y^2+10x-22y+28\)

\(=x^2+4y^2+5^2-4xy+10x-20y+y^2-2y+1+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)

\(\ge0+0+2=2\)

Vậy \(E_{min}=2\), đạt được khi và chỉ khi \(x-2y+5=y-1=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)

Bình luận (0)
NT
Xem chi tiết
H24
Xem chi tiết
BT
Xem chi tiết
BT
4 tháng 11 2018 lúc 19:31

can gap

Bình luận (0)
TP
4 tháng 11 2018 lúc 19:34

Đặt \(A=\left|x-1,3\right|+\left|y-2,1\right|-4,8\)

Vì \(\left|x-1,3\right|\ge0\forall x;\left|y-2,1\right|\ge0\forall y\)

\(\Rightarrow A\ge-4,8\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1,3=0\\y-2,1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1,3\\y=2,1\end{cases}}}\)

Vậy Amin = -4,8 khi và chỉ khi x = 1,3; y = 2,1

Bình luận (0)
MN
Xem chi tiết