Những câu hỏi liên quan
TL
Xem chi tiết
LD
14 tháng 1 2019 lúc 18:11

Ta có:

\(\dfrac{x}{2x+y+z}=\dfrac{x}{\left(x+y\right)+\left(y+z\right)}\le\dfrac{x}{2\sqrt{\left(x+y\right)\left(y+z\right)}}\)

Tương tự với các phân số khác

\(\Rightarrow VT\le\dfrac{1}{2}\left(\dfrac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}+\dfrac{y}{\sqrt{\left(y+z\right)\left(x+y\right)}}+\dfrac{z}{\sqrt{\left(z+x\right)\left(x+y\right)}}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{\sqrt{x}\cdot\sqrt{x}}{\sqrt{x+y}\cdot\sqrt{z+x}}+\dfrac{\sqrt{y}\cdot\sqrt{y}}{\sqrt{y+z}\cdot\sqrt{x+y}}+\dfrac{\sqrt{z}\cdot\sqrt{z}}{\sqrt{z+x}\cdot\sqrt{y+z}}\right)\)

\(\le\dfrac{1}{2}\left(\dfrac{\dfrac{x}{x+y}+\dfrac{x}{z+x}}{2}+\dfrac{\dfrac{y}{y+z}+\dfrac{y}{x+y}}{2}+\dfrac{\dfrac{z}{z+x}+\dfrac{z}{y+z}}{2}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{\left(\dfrac{x}{x+y}+\dfrac{y}{x+y}\right)+\left(\dfrac{y}{y+z}+\dfrac{z}{y+z}\right)+\left(\dfrac{z}{z+x}+\dfrac{x}{z+x}\right)}{2}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{2}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi x = y = z

Bình luận (0)
HN
Xem chi tiết
SG
24 tháng 4 2023 lúc 23:32

Ta có bất đẳng thức AM-GM dạng phân thức sau: 

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow \dfrac{1}{a+b}\le\dfrac{1}{4}(\dfrac{1}{a}+\dfrac{1}{b})\)

Dấu ''='' xảy ra khi và chỉ khi a=b

Quay lại bài toán: Áp dụng bđt trên, ta có:

\(\dfrac{1}{2x+y+z}=\dfrac{1}{(x+y)+(x+z)}\le\dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z})\\ \le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z})=\dfrac{1}{16}(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z})\)

Tương tự:

 \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z})\)\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z})\)

Cộng 3 phân thức lại, ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=\dfrac{1}{4}.4=1\)

Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z=\dfrac{3}{4}\)

Bình luận (0)
KN
Xem chi tiết
LV
Xem chi tiết
LV
Xem chi tiết
NL
27 tháng 6 2021 lúc 8:56

BĐT bên trái rất đơn giản, chỉ cần áp dụng:

\(x^3+x^3+y^3\ge3x^2y\) ; tương tự và cộng lại và được

Ta chứng minh BĐT bên phải:

\(\Leftrightarrow x^4+y^4+z^4+2\ge2\left(x^3+y^3+z^3\right)=\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)

\(\Leftrightarrow2\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

\(\Leftrightarrow\dfrac{1}{8}\left(x+y+z\right)^4\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\)

Thật vậy, ta có:

\(\dfrac{1}{8}\left(x+y+z\right)^4=\dfrac{1}{8}\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]^2\)

\(\ge\dfrac{1}{8}.4\left(x^2+y^2+z^2\right).2\left(xy+yz+zx\right)=\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)\)

\(=x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)+xyz\left(x+y+z\right)\)

\(\ge x^3\left(y+z\right)+y^3\left(z+x\right)+z^3\left(x+y\right)\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;1;1\right)\) và hoán vị

Bình luận (0)
BA
Xem chi tiết
HN
28 tháng 4 2017 lúc 9:03

Ta đặt: \(\left\{{}\begin{matrix}\dfrac{1}{x^2}=a\\\dfrac{1}{y^2}=b\\\dfrac{1}{z^2}=c\end{matrix}\right.\)\(\Rightarrow\sqrt{abc}=abc=1\)

Ta có: \(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\dfrac{1}{\sqrt{a}}+1}+\dfrac{1}{\dfrac{1}{\sqrt{ab}}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{\sqrt{a}}{\sqrt{ba}+1+\sqrt{a}}+\dfrac{1}{1+\sqrt{ab}+\sqrt{a}}=1\)

Quay lại bài toán, sau khi đặt bài toán trở thành:

\(P=\dfrac{1}{2b+a+3}+\dfrac{1}{2c+b+3}+\dfrac{1}{2a+c+3}\)

\(=\dfrac{1}{\left(a+b\right)+\left(b+1\right)+2}+\dfrac{1}{\left(b+c\right)+\left(c+1\right)+2}+\dfrac{1}{\left(c+a\right)+\left(a+1\right)+2}\)

\(\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\right)=\dfrac{1}{2}\)

Bình luận (1)
HN
28 tháng 4 2017 lúc 21:49

Cái đó t cố tình bỏ đấy. B phải tự làm chứ chẳng lẽ t làm hết??

Bình luận (2)
TD
Xem chi tiết
HG
16 tháng 3 2017 lúc 21:37

Áp dụng tính chất dãy tỉ số bằng nhau được:

\(\dfrac{x}{2x+y+z}\)=\(\dfrac{y}{2y+x+z}\)=\(\dfrac{z}{2z+x+y}\)=\(\dfrac{x+y+z}{2x+y+z+2y+x+z+2z+x+y}\)=\(\dfrac{x+y+z}{3x+3y+3z}\)=\(\dfrac{x+y+z}{3.\left(x+y+z\right)}\)=\(\dfrac{1}{3}\)=\(\dfrac{3}{9}\)<\(\dfrac{3}{4}\)(đpcm)

Bình luận (0)
DN
Xem chi tiết
AH
14 tháng 10 2018 lúc 9:41

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+x+y+z)\geq (1+1+1+1)^2\)

\(\Rightarrow \frac{2}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{16}{2x+y+z}\)

Hoàn toàn tương tự:

\(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\geq \frac{16}{x+2y+z}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\geq \frac{16}{x+y+2z}\)

Cộng theo vế các BĐT vừa thu được:

\(\Rightarrow 4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow 16\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow \frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1\)

Ta có đpcm.

Bình luận (0)
DD
14 tháng 10 2018 lúc 9:42

Ta có :

\(\dfrac{1}{2x+y+z}=\dfrac{16}{16\left(x+x+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+2y+z}=\dfrac{16}{16\left(x+y+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}=\dfrac{16}{16\left(x+y+z+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

Cộng từng vế của BĐT ta được :

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Vậy BĐT đã được chứng minh !

Bình luận (0)
BB
Xem chi tiết