Tìm hai số x và y biết rằng :
\(\dfrac{x}{2}=\dfrac{y}{5}\) và \(xy=10\)
Tìm hai số x và y biết rằng:
\(\dfrac{x}{2}=\dfrac{y}{5}\) và xy = 10
Giúp e thêm câu này với ah
Lời giải:
Đặt $\frac{x}{2}=\frac{y}{5}=k$
$\Rightarrow x=2k; y=5k$. Khi đó:
$xy=2k.5k=10$
$10k^2=10$
$k^2=1$
$\Rightarrow k=\pm 1$
Nếu $k=1$ thì $x=2k=2; y=5k=5$
Nếu $k=-1$ thì $x=2k=-2; y=5k=-5$
a) Tìm 2 số x và y cho biết: \(\dfrac{x}{3}\)=\(\dfrac{y}{4}\) và x + y = 28
b) Tìm 2 số x và y biết x : 2 = y : (-5) và x - y = (-7)
c) Tìm 3 số x, y, z biết rằng: \(\dfrac{x}{2}\)=\(\dfrac{y}{3}\) , \(\dfrac{y}{4}\)=\(\dfrac{z}{5}\) và x + y - z = 10
GIÚP MÌNH VỚI Ạ! TKS <3
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
Tìm \(x,y\) trong đẳng thức sau, biết:
\(\dfrac{x}{5}=\dfrac{y}{2}\) và \(xy=10\)
Đặt \(\dfrac{x}{5}=\dfrac{y}{2}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)\(\Rightarrow xy=10k^2\)
\(\Rightarrow k^2=1\Rightarrow k=\pm1\)
Nếu k=1 \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=2\end{matrix}\right.\)
Nếu k=-1 \(\Rightarrow\left\{{}\begin{matrix}x=-5\\y=-2\end{matrix}\right.\)
Tìm x,y,z biết:
a, x : y : z = 10 : 3 : 4 và x + 2y - 3z = -20
b, \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) và \(\dfrac{y}{5}\) = \(\dfrac{z}{4}\) và x - y + z = -49
c, \(\dfrac{x}{2}\)= \(\dfrac{y}{3}\) =\(\dfrac{z}{4}\) và xy + \(z^2\)= 88
d, \(\dfrac{x}{5}\)= \(\dfrac{y}{7}\) = \(\dfrac{z}{3}\) và \(x^2\) + \(y^2\) + \(z^2\) = 415
Giải hộ mk nha
a) tìm hai số x và y biết:\(\dfrac{x}{3},\dfrac{y}{4}\) x+y=28
b)tìm hai số x và y biết: x : 2=y : (-5) và x-y=-7
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\)
Do đó: x=12; y=16
\(a,Sửa:\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\ b,\Rightarrow\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2+5}=\dfrac{-7}{7}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-2\\y=5\end{matrix}\right.\)
a/Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{x+y}{3+4}=\dfrac{28}{7}=4\)
=>x=4.3=12
=>y=4.4.=16
Vậy x=12 và y=16
b/Theo đề ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}\) và x-y=-7
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{-7}{7}=-1\)
=>x=-1.2=-2
=>y=-1.(-5)=5
Vậy x=-2 và y=5
Tìm hai số x, y biết rằng:
a) x + y = 30 và \(\dfrac{x}{2}\)= \(\dfrac{y}{3}\)
b) x – y = −21 và \(\dfrac{x}{5}\)= \(\dfrac{y}{{ - 2}}\)
a) \(x + y = 30;\dfrac{x}{2} = \dfrac{y}{3}\) áp dụng tính chất của tỉ lệ thức ra có :
\( \Rightarrow \dfrac{{x + y}}{{2 + 3}} = \dfrac{x}{2}\)
\( \Rightarrow \dfrac{{30}}{5} = \dfrac{x}{2}\)
\( \Rightarrow 30.2 = x.5\)
\(\begin{array}{l} \Rightarrow 60:5 = x\\ \Rightarrow x = 12\\ \Rightarrow 14 + y = 30\\ \Rightarrow y = 18\end{array}\) ( thay x vừa tìm được = 12 vào x + y = 30 để tìm ra y )
Vậy x = 12 y = 18
b) Ta có : \(\dfrac{x}{5} = \dfrac{y}{{ - 2}}\)= \(\dfrac{{x - y}}{{5 + 2}}\)( áp dụng tính chất tỉ lệ thức ) (1)
Mà theo đề bài x – y = -21
Thay -21 vào (1) ta có : \(\dfrac{{ - 21}}{7} = - 3\) \( = \dfrac{x}{5}\)
\( \Rightarrow \)x = (-3).5
\( \Rightarrow \)x = -15
Thay x bằng -15 ta có -15 – y = -21
\( \Rightarrow \)y = -15 + 21
\( \Rightarrow \)y = 6
Vậy x = -15 và y = 6
Cho biết \(\dfrac{x}{5}=\dfrac{y}{2}\) và xy = 1000 . Tìm x và y .
\(\dfrac{x}{5}=\dfrac{y}{2}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=5k\\y=2k\end{matrix}\right.\)
\(\Rightarrow xy=10k^2=1000\Rightarrow k=\pm10\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=50\\y=20\end{matrix}\right.\\\left\{{}\begin{matrix}x=-50\\y=-20\end{matrix}\right.\end{matrix}\right.\)
tìm 3 số x,y,z biết \(\dfrac{x}{2}=\dfrac{y}{3},\dfrac{y}{4}=\dfrac{z}{5}\)và x+y-z=10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
Do đó: x=16; y=24; z=30
Tìm hai so x và y, biết rằng :
\(\dfrac{x}{2}=\dfrac{y}{5}\) và xy = 10
Giải:
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\Rightarrow\left\{{}\begin{matrix}x=2k\\y=5k\end{matrix}\right.\)
Ta có: \(xy=10\)
\(\Rightarrow10k^2=10\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
+) \(k=1\Rightarrow x=2,y=5\)
+) \(k=-1\Rightarrow x=-2;y=-5\)
Vậy...
Nhân cả hai vế của tỉ lệ thức \(\dfrac{x}{2}\) = \(\dfrac{y}{5}\) với x (x ≠ 0), ta được: Thay xy = 10, ta được: \(\dfrac{x^2}{2}\) = \(\dfrac{10}{5}\)= 2 ⇔x2 = 4. Do đó x = 2 hoặc x = -2
Khi x = 2 thì y = 5
Khi x = -2 thì y = -5
Đặt \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
=>\(\left\{{}\begin{matrix}x=2.k\\y=5.k\end{matrix}\right.\)
Ta có: x.y=10
=>2.k.5.k=10
=>10.k2=10
=>k2=1
=>k=\(\pm1\)
TH1: k=1 =>\(\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)
TH2: k=-1 =>\(\left\{{}\begin{matrix}x=-2\\y=-5\end{matrix}\right.\)
Vậy.......