Những câu hỏi liên quan
BK
Xem chi tiết
NL
4 tháng 12 2021 lúc 16:54

1.

\(\dfrac{3a+b+2c}{2a+c}=\dfrac{a+3b+c}{2b}=\dfrac{a+2b+2c}{b+c}\)

\(\Leftrightarrow\dfrac{a+b+c+2a+c}{2a+c}=\dfrac{a+b+c+2b}{2b}=\dfrac{a+b+c+b+c}{b+c}\)

\(\Leftrightarrow\dfrac{a+b+c}{2a+c}+1=\dfrac{a+b+c}{2b}+1=\dfrac{a+b+c}{b+c}+1\)

\(\Leftrightarrow\dfrac{a+b+c}{2a+c}=\dfrac{a+b+c}{2b}=\dfrac{a+b+c}{b+c}\)

TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\b+c=-a\\c+a=-b\end{matrix}\right.\)

\(\Rightarrow A=\dfrac{\left(-c\right).\left(-a\right).\left(-b\right)}{abc}=-1\)

TH2: \(a+b+c\ne0\)

\(\Rightarrow\dfrac{1}{2a+c}=\dfrac{1}{2b}=\dfrac{1}{b+c}\)

\(\Rightarrow\left\{{}\begin{matrix}2a+c=b+c\\2b=b+c\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2a=b\\b=c\end{matrix}\right.\) \(\Rightarrow2a=b=c\)

\(\Rightarrow P=\dfrac{\left(a+2a\right)\left(2a+2a\right)\left(2a+a\right)}{a.2a.2a}=9\)

Bình luận (0)
NL
4 tháng 12 2021 lúc 16:55

Bài 2 đề sai

Ở phân thức thứ 2 không thể là \(\dfrac{y+3x-x}{x}\)

Bình luận (0)
NM
4 tháng 12 2021 lúc 17:03

Bài 2:

\(P=\dfrac{x+3y}{y}\cdot\dfrac{y+3z}{z}\cdot\dfrac{z+3x}{x}=\dfrac{\left(x+3y\right)\left(y+3z\right)\left(z+3x\right)}{xyz}\)

Với \(x+y+z=0\)

\(\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}\\ \Leftrightarrow\dfrac{x+3y+x+y}{z}=\dfrac{y+3z+y+z}{x}=\dfrac{z+3x+x+z}{y}\\ \Leftrightarrow\dfrac{2\left(x+2y\right)}{z}=\dfrac{2\left(y+2z\right)}{x}=\dfrac{2\left(z+2x\right)}{y}\\ \Leftrightarrow\dfrac{2\left(y-z\right)}{z}=\dfrac{2\left(z-x\right)}{x}=\dfrac{2\left(x-y\right)}{y}\\ \Leftrightarrow\dfrac{2y-2z}{z}=\dfrac{2z-2x}{x}=\dfrac{2x-2y}{y}\\ \Leftrightarrow\dfrac{2y}{z}-2=\dfrac{2z}{x}-2=\dfrac{2x}{y}-2\\ \Leftrightarrow\dfrac{2y}{z}=\dfrac{2z}{x}=\dfrac{2x}{y}\\ \Leftrightarrow\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x}{y}\Leftrightarrow x=y=z=0\left(\text{trái với GT}\right)\)

Với \(x+y+z\ne0\)

\(\Leftrightarrow\dfrac{x+3y-z}{z}=\dfrac{y+3z-x}{x}=\dfrac{z+3x-y}{y}=\dfrac{3\left(x+y+z\right)}{x+y+z}=3\\ \Leftrightarrow\left\{{}\begin{matrix}x+3y-z=3z\\y+3z-x=3x\\z+3x-y=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=4z\\y+3z=4x\\z+3x=4y\end{matrix}\right.\\ \Leftrightarrow P=\dfrac{4x\cdot4y\cdot4z}{xyz}=64\)

Bình luận (0)
BK
Xem chi tiết
BK
Xem chi tiết
H24
Xem chi tiết
PP
Xem chi tiết
DT
Xem chi tiết
H24
8 tháng 7 2017 lúc 16:10

Bài 1:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}=\dfrac{12x-8y+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x-2y=0\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\2z-4x=0\Rightarrow2z=4x\Rightarrow\dfrac{x}{2}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{18}{9}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=6\\z=8\end{matrix}\right.\)

Vậy \(x=4;y=6;z=8\)

Bài 2:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2bz-3cy}{a}=\dfrac{3cx-az}{2b}=\dfrac{ay-2bx}{3c}=\dfrac{2abz-3acy+6bcx-2baz+3cay-6bcx}{a^2+4b^2+9c^2}\)

\(\Rightarrow\left\{{}\begin{matrix}2bz-3cy=0\Rightarrow2bz=3cy\Rightarrow\dfrac{y}{2b}=\dfrac{z}{3c}\\3cx-az=0\Rightarrow3cx=az\Rightarrow\dfrac{x}{a}=\dfrac{z}{3c}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\left(đpcm\right)\)

Vậy \(\dfrac{x}{a}=\dfrac{y}{2b}=\dfrac{z}{3c}\)

Bình luận (0)
DA
Xem chi tiết
TN
22 tháng 3 2023 lúc 22:48

Áp dụng t/c của DTSBN , ta có :

+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+2\left(2a+b-c\right)+4a-4b+c}\\ =\dfrac{x+2y+z}{a+2b+c+4a+2b-2a-2c+4a-4b+c}\\ =\dfrac{x+2y+z}{\left(a+4a+4a\right)+\left(2b+2b-4b\right)+\left(c-2c+c\right)}\\ =\dfrac{x+2y+z}{9a}\left(1\right)\)

+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{2x+y-z}{2\left(a+2b+c\right)+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{2a+4b+2c+2a+b-c-4a+4b+c}\\ =\dfrac{2x+y-z}{\left(2a+2a-4a\right)+\left(4b+b+4b\right)+\left(2c-c+c\right)}\\ =\dfrac{2x+y-z}{9b}\left(2\right)\)

+, \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\\ =\dfrac{4x-4y+z}{4\left(a+2b+c\right)-4\left(2a+b-c\right)++4a-4b+c}\\ =\dfrac{4x-4y+z}{4a+8b+4c-8a-4b+4c+4a-4b+c}\\ =\dfrac{4x-4y+z}{\left(4a-8a+4a\right)+\left(8b-4b-4b\right)+\left(4c+4c+c\right)}\\ =\dfrac{4x-4y+z}{9c}\left(3\right)\)

Từ (1);(2) và (3) 

\(\Rightarrow\dfrac{x+2y+z}{9a}=\dfrac{2a+y-z}{9b}=\dfrac{4x-4y+z}{9c}\\ \Rightarrow\dfrac{x+2y+z}{9a}\cdot9=\dfrac{2a+y-z}{9b}\cdot9=\dfrac{4x-4y+z}{9c}\cdot9\\ \Rightarrow\dfrac{x+2y+z}{a}=\dfrac{2a+y-z}{b}=\dfrac{4x-4y+z}{c}\\ \Rightarrow\dfrac{a}{a+2y+z}=\dfrac{b}{2a+y-z}=\dfrac{c}{4x-4y+z}\left(đpcm\right)\)

Bình luận (0)
NL
22 tháng 3 2023 lúc 22:35

Đặt \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=k\left(a+2b+c\right)\\y=k\left(2a+b-c\right)\\z=k\left(4a-4b+c\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{a}{k\left(a+2b+c\right)+2k\left(2a+b-c\right)+k\left(4a-4b+c\right)}=\dfrac{a}{k.9a}=\dfrac{1}{9k}\)

Tượng tự:

\(\dfrac{b}{2x+y-z}=\dfrac{b}{9bk}=\dfrac{1}{9k}\) ; \(\dfrac{c}{4x-4y+z}=\dfrac{c}{9k.c}=\dfrac{1}{9k}\)

\(\Rightarrow\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)

Bình luận (0)
DA
Xem chi tiết
DP
Xem chi tiết
NT
21 tháng 2 2018 lúc 21:15

b/
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c-b+a+2a+b-c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
* \(\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b+c=3a\\2c+a=3b\\2a+b=3c\end{matrix}\right.\)
+)\(\Rightarrow\left\{{}\begin{matrix}c=3a-2b\\a=3b-2c\\b=3c-2a\end{matrix}\right.\)
\(\Rightarrow\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)=abc\left(1\right)\)
+) \(\Rightarrow\left\{{}\begin{matrix}2b=3c-a\\2c=3b-a\\2a=3c-b\end{matrix}\right.\)
\(\Rightarrow\left(3a-c\right)\left(3b-a\right)\left(3c-b\right)=8abc\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{abc}{8abc}=\dfrac{1}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)

Bình luận (0)