Rút gọn phân thức 2xy-x^2/3x^3-6x^2y
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
Rút gọn
a, (3x+2).(9x\(^2\)-6x+4)
b, (x-2y)\(^3\) -(x\(^2\)-2xy+y\(^2\))
a: \(\left(3x+2\right)\left(9x^2-6x+4\right)\)
\(=27x^3+8\)
b: \(\left(x-2y\right)^3-\left(x^2-2xy+y^2\right)\)
\(=x^3-6x^2y+12xy^2-8y^3-x^2+2xy-y^2\)
Rút gọn biểu thức sau:
(4x^3y^2-6x^2y^3)/2xy+2xy*(y-x)
Bài làm
\(\frac{4x^3y^2-6x^2y^3}{2xy+2xy\left(y-x\right)}=\frac{2x^2y^2\left(2x-3y\right)}{2xy\left(1+y-x\right)}=\frac{xy\left(2x-3y\right)}{1+y-x}\)
Học tốt
\(\frac{4x^3y^2-6x^2y^3}{2xy+2xy\left(y-x\right)}=\frac{2x^2y^2\left(2x-3y\right)}{2xy\left(1+y-x\right)}=\frac{xy\left(2x-3y\right)}{y-x+1}\)
Câu1. Thực hiện phép tính
A) 5 (4x-y)
B) (x^3+3x^2-8x-20)÷(x+2)
C) (10x^4y^3-5x^2y+6x^2y^2)÷(2xy)
D) (x^2-3x+1)(x-2)
Câu2. Phân tích đa thức thành nhân tử
A) x-y+5x-5y
B) x^2-2xy+y^2-z^2
Câu 3. Rút gọn biểu thức rồi tính giá trị của biểu thức
(x^3-y^3)÷(x^2+xy+y^2) tại x=2/3; y=1/3
Rút gọn đa thức sau rồi tìm bậc
\(A=2xy^2+3x^2y-x^3+x^2y-xy^2+2x^3\)
A=xy2 +4x2y+x3
=> Bậc của đa thức A là:3
\(A=2xy^2+3x^2y-x^3+x^2y-xy^2+2x^3\)
\(=\left(2xy^2-xy^2\right)+\left(3x^2y+x^2y\right)+\left(-x^3+2x^3\right)\)
\(=xy^2+4x^2y+x^3\)
\(\Rightarrow\)Bậc của đa thức là \(3\)
A=\(2XY^2+3x^2y-x^3+x^2y-xy^2+2x^3\)
\(A=\left(2xy^2-xy^2\right)+\left(3x^2y+x^2y\right)+\left(-x^3+2x^3\right)\)
\(A=xy^2+4x^2y+x^3\)
b;BẬC LÀ 3
Rút gọn các biểu thức sau:
a) A= 1/3xy + 4xy - 2xy
b) B=-xy^2 + 3/2xy^2 + 4/3xy^2
c) C= (2xy)^2 + 2/3x^2y^2 - 4/3xyx
d) D= x. (3xy^2z) + 4x^2y^2z - 8x^2y . yz
a: =xy(1/3+4-2)=7/3xy
b: =xy^2(-1+3/2+4/3)=(1/3+3/2)xy^2=11/6xy^2
c: =4x^2y^2+2/3x^2y^2-4/3x^2y=-4/3x^2y+14/3x^2y^2
d: =3x^2y^2z+4x^2y^2z-8x^2y^2z=-x^2y^2z
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
1)Phân tích đa thức thành nhân tử:
a)6x^3-24x^2y+24xy^2
b)x^2-axy-bxy+aby^2
2)Tìm x,biết: 4x^2-(x+1)^2=0
3) Rút gọn các biểu thức sau:
a)(x-3).(x^2+3x+9)-x.(x-1).(x+1)+2.(x+10)
b)x/x-2y+x/x+2y+4xy/4y^2-x^2
Bài 2:
\(\Leftrightarrow\left(x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
rút gọn phân thức:
\(\dfrac{x^3-4x^2+4x}{x^2-4}\)
\(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
1. \(\dfrac{x^3-4x^2+4x}{x^2-4}=\dfrac{x\left(x^2-4x+4\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}=\dfrac{x\left(x-2\right)}{x+2}\)
\(\dfrac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}=\dfrac{y\left(x^2+2xy+y^2\right)}{2x^2+2xy-xy-y^2}=\dfrac{y\left(x+y\right)^2}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\dfrac{y\left(x+y\right)^2}{\left(2x-y\right)\left(x+y\right)}=\dfrac{y\left(x+y\right)}{2x-y}\)