Chứng minh bất phương trình : a2 + \(\dfrac{b^2}{4}\)\(\ge\)ab
Bài 2: (2,0 điểm)
a) Giải bất phương trình sau: 4x – 2 > 5x + 1
b) Chứng minh rằng a2 + b2 + c2 > ab + bc + ca với mọi số thực a,b,c
a) `4x-2>5x+1`
`<=>-x>3`
`<=>x<-3`
b) Theo BĐT Cauchy:
`a^2+b^2 >= 2ab`
Tương tự:
`b^2+c^2>=2bc`
`c^2+a^2>=2ca`
Cộng vế với vế: `2(a^2+b^2+c^2) >= 2(ab+bc+ca)`
`<=>a^2+b^2+c^2 >= ab+bc+ca` (ĐPCM)
a, \(4x-2>5x+1\Leftrightarrow-x>3\Leftrightarrow x< -3\)
b, Ta có : \(a^2+b^2+c^2\ge ab+bc+ca\)
\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)* luôn đúng *
Chứng minh bất đẳng thức : \(a^2+\dfrac{b^2}{4}\ge ab\) .Cảm ơn trước nha!
\(a^2+\dfrac{b^2}{4}\ge ab\)
\(\Leftrightarrow a^2-2\cdot\dfrac{1}{2}\cdot a\cdot b+\left(\dfrac{1}{2}b\right)^2\ge0\)
\(\Leftrightarrow\left(a-\dfrac{1}{2}b\right)^2\ge0\)(luôn đúng)
Áp dụng bđt cô-si có:
\(a^2+\dfrac{b^2}{4}\ge2\sqrt{\dfrac{a^2b^2}{4}}=2\cdot\dfrac{ab}{2}=ab\left(đpcm\right)\)
Chứng minh Bất đẳng thức sau:\(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
Giải bất phương trình \(\dfrac{3x+2}{1-2x}+\dfrac{7}{2}\ge\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{12x+8+7-14x}{4\left(1-2x\right)}-\dfrac{3}{4}\ge0\)
\(\Leftrightarrow\dfrac{-2x+15-3+6x}{4\left(1-2x\right)}\ge0\Leftrightarrow\dfrac{4x+12}{4\left(1-2x\right)}\ge0\)
TH1 : \(\left\{{}\begin{matrix}4x+12\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\le\dfrac{1}{2}\end{matrix}\right.\)<=> -3 =< x =< 1/2
TH2 : \(\left\{{}\begin{matrix}x\le-3\\x\ge\dfrac{1}{2}\end{matrix}\right.\)* vô lí *
Giải bất phương trình:
\(\dfrac{2}{x^2-3x+2}\ge\dfrac{3}{x^2+5x+4}\)
\(\Leftrightarrow\dfrac{2}{x^2-3x+2}-\dfrac{3}{x^2+5x+4}\ge0\)
\(\Leftrightarrow\dfrac{-x^2+19x+2}{\left(x^2-3x+2\right)\left(x^2+5x+4\right)}\ge0\)
\(\Leftrightarrow\dfrac{-x^2+19x+2}{\left(x-2\right)\left(x-1\right)\left(x+1\right)\left(x+4\right)}\ge0\)
\(\Rightarrow\left[{}\begin{matrix}2< x\le\dfrac{19+3\sqrt{41}}{2}\\\dfrac{19-3\sqrt{41}}{2}\le x< 1\\-4< x< -1\end{matrix}\right.\)
Chứng minh các bất đẳng thức:
a) \(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}\ge2xy\)
b) \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với \(x>0,y>0\)
Chứng minh bất đẳng thức :
\(\dfrac{a_1^2}{a_2+a_3+a_4}+\dfrac{a_2^2}{a_3+a_4+a_5}+\dfrac{a_3^2}{a_4+a_5+a_1}+\dfrac{a^2_4}{a_5+a_1+a_2}+\dfrac{a_5^2}{a_1+a_2+a_3}\ge\dfrac{\sqrt{5}}{3}\)
trong đó : a1, a2, ....., a5 là các số dương thỏa mãn điều kiện:
\(a_1^2+a^2_2+a_3^2+a_4^2+a_5^2\ge1\)
Chứng minh rằng nếu: a + b = 1 thì a2 + b2 \(\ge\dfrac{\text{1}}{\text{2}}\).
Với mọi số thực ta luôn có:
`(a-b)^2>=0`
`<=>a^2-2ab+b^2>=0`
`<=>a^2+b^2>=2ab`
`<=>2(a^2+b^2)>=(a+b)^2=1`
`<=>a^2+b^2>=1/2(đpcm)`
Dấu "=' `<=>a=b=1/2`
ta có:
(a²+b²)(1²+1²)≥(a.1+b.1)²
⇔ 2(a²+b²) ≥ (a+b)²
⇔ 2(a²+b²)≥ 1 (vì a+b=1)
⇔ a² +b² ≥ 1/2 (đpcm)
dấu "=) xảy ra khi a = b = 1/2
Giải bất phương trình:
\(\dfrac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\dfrac{1}{x-2}\)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne7\end{matrix}\right.\)
\(\dfrac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\dfrac{2x-8}{x^2-8x+7}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\left(2x-8\right)\left(x-2\right)\ge x^2-8x+7\)
\(\Leftrightarrow2x^2-12x+16\ge x^2-8x+7\\ \Leftrightarrow x^2-4x+9\ge0\left(luôn.đúng\right)\)