\(2-\left(\frac{3}{4}-\frac{2x}{3}+1\frac{1}{2}:\frac{-3}{4}\right)=1-\frac{x}{2}\)
Giải phương trình:
1. \(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
2. \(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
3. \(\frac{2x-1}{5}-\frac{x-2}{3}=\frac{x+7}{15}\)
4. \(\frac{x+3}{2}-\frac{x-1}{3}=\frac{x+5}{6}+1\)
5. \(\frac{x-4}{5}-\frac{3x-2}{10}-x=\frac{2x-5}{3}-\frac{7x+2}{6}\)
6. \(\frac{\left(x+2\right)\left(x+10\right)}{3}-\frac{\left(x+4\right)\left(x+10\right)}{12}=\frac{\left(x-2\right)\left(x+4\right)}{4}\)
7. \(\frac{\left(x+2\right)^2}{8}-2\left(2x-1\right)=25+\frac{\left(x-2\right)^2}{8}\)
8.\(\frac{7x^2-14x-5}{5}=\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}\)
9. \(\frac{\left(2x-3\right)\left(2x+3\right)}{8}=\frac{\left(x-4\right)^2}{6}+\frac{\left(x-2\right)^2}{3}\)
10. \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
1)2x(25x-4)-(5x-2)(5x+1)=8 / 5)\(2\left(x-2\right)-3\left(3x-1\right)=\left(x-3\right)\)
2)x(4x-3)-(2x-2)(2x-1)=5 / 6)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
3)\(\frac{5}{2x+3}+\frac{3}{9-x^2}=\frac{8}{7\left(x=3\right)}\) / 7)\(\frac{5x-2}{6}+\frac{3-4x}{2}=2-\frac{x+7}{3}\)
4)\(\frac{2}{3\left(x-2\right)}+\frac{5}{12-3x^2}=\frac{3}{4\left(x+2\right)}\) / 8)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Đây là lớp 8 nha các b giúp mk với
Do mk viết nhầm
\(\frac{12}{16}=\frac{-x}{4}=\frac{21}{y}=\frac{z}{80}\) \((-0,6x-\frac{1}{2}).\frac{3}{4}-\left(-1\right)=\frac{1}{3}\)
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\left(2x-3\right).\left(6-2x\right)=0\)
\(\frac{-2}{3}-\frac{1}{3}\left(2x-5\right)=\frac{3}{2}\)
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
c) \(\left(2x-3\right).\left(6-2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=3\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{3}{2};3\right\}\)
e) \(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)
\(\Leftrightarrow2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)
\(\Leftrightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}:2=\frac{7}{4}.\frac{1}{2}=\frac{7}{8}\)
\(\Rightarrow\left[{}\begin{matrix}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=\left(-\frac{7}{8}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{29}{12}\\x=\frac{-13}{12}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{29}{12};\frac{-13}{12}\right\}\)
Mấy bài này ko quá khó, tải MathPhoto trong đt về nó tự lm
Giai phuong trinh:
a)\(\frac{4+9x}{9x^21}=\frac{3}{3x+1}-\frac{2}{1-3x}\)
b)\(\frac{2x-3}{x+1}+\frac{x^2-5x+10}{\left(x+1\right)\left(x-3\right)}=\frac{3x-5}{x-3}\)
c)\(\frac{x\left(x+4\right)}{2x-3}=\frac{x^2+4}{2x-3}+1-\frac{2}{3-2x}\)
d)\(\frac{1}{x+2}+\frac{x}{x-3}=1-\frac{5x}{\left(x+2\right)\left(3-x\right)}-\frac{1}{x+2}\)
Tìm X: \(\frac{\left(x+1\right)^2-\frac{x}{2}}{4}=\frac{\left(2x-3\right)^2}{3}-\frac{\frac{x+1}{4}-\frac{x\left(3-2x\right)}{3}}{4}\)
\(\frac{\left(x+1\right)^2-\frac{x}{2}}{4}=\frac{\left(2x-3\right)^2}{3}-\frac{\frac{x+1}{4}-\frac{x\left(3-2x\right)}{3}}{4}\)
\(\Rightarrow3\left[\left(x+1\right)^2-\frac{x}{2}\right]=4\left(2x-3\right)^2-3\left[\frac{x+1}{4}-\frac{x\left(3-2x\right)}{3}\right]\)
\(\Rightarrow3\left(x+1\right)^2-\frac{3x}{2}=4\left(2x-3\right)^2-\frac{3\left(x+1\right)}{4}+\frac{3x\left(3-2x\right)}{3}\)
\(\Rightarrow36\left(x+1\right)^2-18x=48\left(2x-3\right)^2-9\left(x+1\right)+12x\left(3-2x\right)\)
=> 36.(x2 + 2x + 1) - 18x = 48.(4x2 - 12x + 9) - 9(x + 1) + 12x(3 - 2x)
=> 36x2 + 72x + 36 - 18x - 192x2 + 576x - 432 + 9x + 9 - 36x + 24x2 = 0
=> -132x2 + 603x - 387 = 0
Có: \(\Delta=603^2-4.\left(-387\right)\left(-132\right)=159273\Rightarrow\sqrt{\Delta}=\sqrt{159273}\)
\(\Rightarrow x=\frac{-603+\sqrt{159273}}{-264}\) hoặc \(x=\frac{-603-\sqrt{159273}}{-264}\)
Vậy phương trình có 2 nghiệm : x = \(\left\{\frac{-603+\sqrt{159273}}{-264};\frac{-603-\sqrt{159273}}{-264}\right\}\)
Câu này không có nghiệm nguyên nha bạn.
hệ phương trình
1, \(\left\{{}\begin{matrix}\frac{1}{x+y}+\frac{1}{x-y}=\frac{5}{8}\\\frac{1}{x+y}-\frac{1}{x-y}=-\frac{3}{8}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\frac{4}{2x-3y}+\frac{5}{3x+y}=2\\\frac{3}{3x+y}-\frac{5}{2x-3y}=21\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\frac{7}{x-y+2}+\frac{5}{x+y-1}=\frac{9}{2}\\\frac{3}{x-y+2}+\frac{2}{x+y-1}=4\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\frac{3}{x}+\frac{5}{y}=-\frac{3}{2}\\\frac{5}{x}-\frac{2}{y}=\frac{8}{3}\end{matrix}\right.\)
5 , \(\left\{{}\begin{matrix}\frac{2}{x+y-1}-\frac{4}{x-y+1}=-\frac{14}{5}\\\frac{3}{x+y-1}+\frac{2}{x-y+1}=-\frac{13}{5}\end{matrix}\right.\)
6 , \(\left\{{}\frac{\frac{2x-3}{2y-5}=\frac{3x+1}{3y-4}}{2\left(x-3\right)-3\left(y+20=-16\right)}}\)
7\(\left\{{}\begin{matrix}\left(x+3\right)\left(y+5\right)=\left(x+1\right)\left(y+8\right)\\\left(2x-3\right)\left(5y+7\right)=2\left(5x-6\right)\left(y+1\right)\end{matrix}\right.\)
Bài 1. Giải các phương trình sau
1) \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}-2x\)
2) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
3) \(2\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
4) \(\frac{2x+3}{3}=\frac{5-4x}{2}\)
5) \(\frac{5x+3}{12}=\frac{1+2x}{9}\)
6) \(x-\frac{x+1}{3}=\frac{2x+1}{5}\)
7) \(\frac{3\left(x-3\right)}{4}+\frac{4x-10,5}{10}=\frac{3\left(x+1\right)}{5}+6\)
8) \(\frac{2\left(3x+1\right)+1}{4}-5=\frac{2 \left(3x-1\right)}{5}-\frac{3x+2}{10}\)
9) \(\frac{x+1}{3}+\frac{3\left(2x+1\right)}{4}=\frac{2x+3\left(x+1\right)}{6}+\frac{7+12x}{12}\)
10) \(\frac{2x-1}{3}-\frac{5x+2}{7}=x+13\)
Giải các phương trình sau :
\(a,6x^2-5x+3=2x-3x\left(3-2x\right)\)
\(b,\frac{2\left(x-4\right)}{4}-\frac{3+2x}{10}=x+\frac{1-x}{5}\)
\(c,\frac{2x}{3}+\frac{3x-5}{4}=\frac{3\left(2x-1\right)}{2}-\frac{7}{6}\)
\(d,\frac{6x+5}{2}-\frac{10x+3}{4}=2x+\frac{2x+1}{2}\)
\(e,\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)
a) <=> \(6x^2-5x+3-2x+3x\left(3-2x\right)=0\)
<=> \(6x^2-5x+3-2x+9x-6x^2=0\)
<=> \(2x+3=0\)
<=> \(x=\frac{-3}{2}\)
b) <=> \(10\left(x-4\right)-2\left(3+2x\right)=20x+4\left(1-x\right)\)
<=> \(10x-40-6-4x=20x+4-4x\)
<=> \(6x-46-16x-4=0\)
<=> \(-10x-50=0\)
<=> \(-10\left(x+5\right)=0\)
<=> \(x+5=0\)
<=> \(x=-5\)
c) <=> \(8x+3\left(3x-5\right)=18\left(2x-1\right)-14\)
<=> \(8x+9x-15=36x-18-14\)
<=> \(8x+9x-36x=+15-18-14\)
<=> \(-19x=-14\)
<=> \(x=\frac{14}{19}\)
d) <=>\(2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)
<=> \(12x+10-10x-3=8x+4x+2\)
<=> \(2x-7=12x+2\)
<=> \(2x-12x=7+2\)
<=> \(-10x=9\)
<=> \(x=\frac{-9}{10}\)
e) <=> \(x^2-16-6x+4=\left(x-4\right)^2\)
<=> \(x^2-6x-12-\left(x-4^2\right)=0\)
<=> \(x^2-6x-12-\left(x^2-8x+16\right)=0\)
<=> \(x^2-6x-12-x^2+8x-16=0\)
<=> \(2x-28=0\)
<=> \(2\left(x-14\right)=0\)
<=> x-14=0
<=> x=14
Luffy , cậu sai câu c nhé , kia là -17 ạ => x=17/19
tìm x biết :
a) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
a) (x + 1/2) . (2/3 − 2x) = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+\frac{1}{2}=0\\\frac{2}{3}-2x=0\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\2x=\frac{2}{3}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\\x=\frac{1}{3}\end{array}\right.\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-2+\frac{3}{7}\)
\(\Rightarrow\left(x.\frac{44}{7}+\frac{3}{7}\right).\frac{11}{5}=-\frac{11}{7}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{11}{7}:\frac{11}{5}=-\frac{11}{7}.\frac{5}{11}\)
\(\Rightarrow x.\frac{44}{7}+\frac{3}{7}=-\frac{5}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{5}{7}-\frac{3}{7}\)
\(\Rightarrow x.\frac{44}{7}=-\frac{8}{7}\)
\(\Rightarrow x=-\frac{8}{7}:\frac{44}{7}=-\frac{8}{7}.\frac{7}{44}\)
\(\Rightarrow x=-\frac{2}{11}\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
\(\Rightarrow x\left(3\frac{1}{4}-\frac{7}{6}\right)=\frac{5}{12}+\frac{5}{3}\)
\(\Rightarrow x\left(\frac{13}{4}-\frac{7}{6}\right)=\frac{25}{12}\)
\(\Rightarrow x.\frac{25}{12}=\frac{25}{12}\)
\(\Rightarrow x=\frac{25}{12}:\frac{25}{12}\)
\(\Rightarrow x=1\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
\(\Rightarrow\left(5\frac{8}{17}-\frac{4}{17}\right):x+\frac{22}{7}:\frac{52}{3}=\frac{4}{11}\)
\(\Rightarrow5\frac{4}{17}:x+\frac{33}{182}=\frac{4}{11}\)
\(\Rightarrow\frac{89}{17}:x=\frac{4}{11}-\frac{33}{182}\)
\(\Rightarrow\frac{89}{17}:x=\frac{365}{2002}\)
\(\Rightarrow x=\frac{89}{17}:\frac{365}{2002}\)
\(\Rightarrow x\approx28,7\) (số hơi lẻ)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{17}{2}+\frac{7}{4}\)
\(\Rightarrow\left|2x-\frac{3}{4}\right|=\frac{41}{4}\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x-\frac{3}{4}=\frac{41}{4}\\2x-\frac{3}{4}=-\frac{41}{4}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}2x=11\\2x=-\frac{19}{2}\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{11}{2}\\x=-\frac{19}{4}\end{array}\right.\)
Phạm Tuấn Kiệt câu a sao nhìn không đc vậy ???
giải phương trình
\(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)^{ }\)
\(\frac{2a-9}{2a-5}+\frac{3a}{3a-2}=2\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
\(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{8x^23}{3\left(1-4x^2\right)}=\frac{2x}{6x-3}-\frac{1+8x}{4+8x}\)
\(\frac{x-3}{x-2}+\frac{x-2}{x-4}=-1\)
\(\frac{2x+1}{x-1}=\frac{5\left(x-1\right)}{x+1}\)
\(\frac{x-3}{x-2}-\frac{x-2}{x-4}=3\frac{1}{5}\)
\(\frac{5x-2}{2-2x}+\frac{2x-1}{2}=1-\frac{x^2+x-3}{1-x}\)