Những câu hỏi liên quan
RC
Xem chi tiết
H24
Xem chi tiết
NL
22 tháng 4 2021 lúc 18:16

\(BE||DM\) (cùng vuông góc AC)

Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)

\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)

Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)

Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)

\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)

Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)

(1); (2) suy ra đpcm

Bình luận (3)
NL
22 tháng 4 2021 lúc 18:17

undefined

Bình luận (0)
NL
22 tháng 4 2021 lúc 18:29

2.

\(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{3}{xy}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)-\dfrac{3}{xy}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{z^3}\)

\(=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3-\dfrac{3}{xy}\left(-\dfrac{1}{z}\right)+\dfrac{1}{z^3}\)

\(=\left(-\dfrac{1}{z}\right)^3+\dfrac{3}{xyz}+\dfrac{1}{z^3}\)

\(=-\dfrac{1}{z^3}+\dfrac{3}{xyz}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)

Do đó:

\(P=\dfrac{2017}{3}xyz.\dfrac{3}{xyz}=2017\)

Bình luận (0)
RC
Xem chi tiết
HD
Xem chi tiết
RC
Xem chi tiết
SS
Xem chi tiết
KR
16 tháng 6 2023 lúc 13:16

Ta có:

\(\widehat{A}>\widehat{B}=\widehat{C}\left(90^0>45^0=45^0\right)\)

`@` Theo định lý quan hệ giữa góc và cạnh đối diện

`->`\(\text{BC > AC = AB}\).

Bình luận (0)
LT
Xem chi tiết
HD
Xem chi tiết
HD
Xem chi tiết
LK
Xem chi tiết
TQ
21 tháng 2 2022 lúc 21:29

mn 7cm nha 

Bình luận (0)
 Khách vãng lai đã xóa