Tìm x
a, x(x-3)+(x-3)=0
b, 7x(x-5)-x+5=0
ai nhanh mk sẽ vote ạ
Bài 3 tìm x
a) (x-1)(x-5) 3=0
b) 3x^2+7x=10
`3(x-1)(x-5) =0`
`<=> (x-1) =0` hoặc `x-5 = 0`.
`<=> x =1` hoặc `x = 5`.
Vậy `x = 1` hoặc `x = 5.`
`b, 3x^2 + 7x = 10`.
`<=> 3x^2 + 7x - 10 = 0`
`<=> (3x+10)(x-1) =0`
`<=> 3x + 10 = 0` hoặc `x - 1=0`
`<=> x = -10/3` hoặc `x = 1.`
Vậy `x = -10/3` hoặc `x = 1.`
Phân tích đa thức sau thành nhân tử :
a/ \(x^2+x+6\)
b/ \(3x^2+2x-5\)
c,\(3-2x-x^2\)
d,\(x^2+7x+12\)
e,\(x^2-x-12\)
f,\(x^2+x+12\)
Ai nhanh mình sẽ vote cho bạn đó ạ
b) \(3x^2+2x-5=3\left(x-1\right)\left(x+\dfrac{5}{3}\right)\)
c) \(3-2x-x^2=-\left(x-1\right)\left(x+3\right)\)
d) \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
e) \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
b: \(3x^2+2x-5\)
\(=3x^2-3x+5x-5\)
\(=\left(x-1\right)\left(3x+5\right)\)
c: \(3-2x-x^2\)
\(=-\left(x^2+2x-3\right)\)
\(=-\left(x+3\right)\left(x-1\right)\)
d: \(x^2+7x+12=\left(x+3\right)\left(x+4\right)\)
e: \(x^2-x-12=\left(x-4\right)\left(x+3\right)\)
tìm x
a)(x-8)(x^3+8)=0
b)(4x-3)-(x+5)=3(10-x)
giúp mình với ạ đang cần gấp ạ
\(a,\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow4x-3-x-5=30-3x\\ \Leftrightarrow4x-x+3x=30+5+3\\ \Leftrightarrow6x=38\\ \Leftrightarrow x=\dfrac{19}{3}\)
Tìm x
a,(7x+4)^2-(7x+4)(7x-4)=0
b, 5( x + 3 )( x - 3 ) + ( 2x + 3 )^2+(x-6)^=10
c, (x + 1)^3 + (x – 2)^3 – 2x^2 (x – 1,5) = 3
d,( x + 2)(x^2 – 2x + 4)(x – 2)(x^2 + 2x + 4) = – 65
e, 4x^2 + 4x – 5 = 2
f,16x^2 – 9(x + 1)^2 = 0
Các bạn giúp mình vs mai mình phải nộp rùii
f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)
tìm x
a)x^2-x-12=0
b)x^2+3x-18=0
c)8x^2+30x+7=0
d)x^3-11x^2+30x=0
e)x^3-7x^2+15x-25=0
giúp mk vs ah!!!!!
a) Ta có: \(x^2-x-12=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
b) Ta có: \(x^2+3x-18=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=3\end{matrix}\right.\)
tìm x bt
a)x(x-5)-4x+20=0
b)x(x+6)-7x-42=0
c)x^3-5x^2-x+5=0
d)4x^2-25-(2x-5)(3x+7)=0
e)x^3+27+(x+3)(x-9)=0
giúp mk vs ah!!1
a) x(x - 5) - 4x + 20 = 0
\(\Leftrightarrow\) x(x - 5) - (4x + 20)
\(\Leftrightarrow\) x(x - 5) - 4(x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x - 4)
Khi x - 5 = 0 hoặc x - 4 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 4
Vậy S = \(\left\{5;4\right\}\)
b) x(x + 6) - 7x - 42 = 0
\(\Leftrightarrow\) x(x + 6) - (7x - 42) = 0
\(\Leftrightarrow\) x(x + 6) - 7(x + 6) = 0
\(\Leftrightarrow\) (x + 6)(x - 7) = 0
Khi x - 6 = 0 hoặc x - 7 = 0
\(\Leftrightarrow\) x = 6 \(\Leftrightarrow\) x = 7
Vậy S = \(\left\{6;7\right\}\)
c) x3 - 5x2 - x + 5 = 0
\(\Leftrightarrow\) (x3 - 5x2) - (x + 5) = 0
\(\Leftrightarrow\) x2 (x - 5) - (x - 5) = 0
\(\Leftrightarrow\) (x - 5)(x2 - 1) = 0
\(\Leftrightarrow\) (x - 5)(x - 1)(x + 1) = 0
Khi x - 5 = 0 hoặc x - 1 = 0 hoặc x + 1 = 0
\(\Leftrightarrow\) x = 5 \(\Leftrightarrow\) x = 1 \(\Leftrightarrow\) x = -1
Vậy S = \(\left\{5;1;-1\right\}\)
d) 4x2 - 25 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x)2 - 52 - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)(2x + 5) - (2x - 5)(3x + 7) = 0
\(\Leftrightarrow\) (2x - 5) \([\left(2x+5\right)-\left(3x+7\right)]\) = 0
\(\Leftrightarrow\) (2x - 5) ( 2x + 5 - 3x + 7) = 0
\(\Leftrightarrow\) (2x - 5)( -x + 12) = 0
Khi 2x - 5 = 0 hoặc -x + 12 = 0
\(\Leftrightarrow\) 2x = 5 \(\Leftrightarrow\) -x = -12
\(\Leftrightarrow\) x = \(\dfrac{5}{2}\) \(\Leftrightarrow\) x = 12
Vậy S = \(\left\{\dfrac{5}{2};12\right\}\)
e) x3 + 27 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) x3 - 33 + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 3x + 9) + (x + 3)(x - 9) = 0
\(\Leftrightarrow\) (x - 3) \(\left[\left(x^2-3x+9\right)+\left(x-9\right)\right]\) = 0
\(\Leftrightarrow\) (x - 3) ( x2 - 3x + 9 + x - 9) = 0
\(\Leftrightarrow\) (x - 3)(x2 - 2x) = 0
\(\Leftrightarrow\) (x - 3)x(x - 2)
Khi x - 3 = 0 hoặc x = 0 hoặc x - 2 = 0
\(\Leftrightarrow\) x = 3 \(\Leftrightarrow\) x = 2
Vậy S = \(\left\{3;0;2\right\}\)
Chúc bạn học tốt
a) Ta có: \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=4\end{matrix}\right.\)
b) Ta có: \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
c) Ta có: \(x^3-5x^2-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=1\\x=-1\end{matrix}\right.\)
d) Ta có: \(4x^2-25-\left(2x-5\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-3x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-2\end{matrix}\right.\)
Tìm GTNN của A=\(x^4-6x^3+12x^2-12x+2021\)
Giúp mk vs ạ mk đang cần gấp ai nhanh mk sẽ vote cho ạ :<
\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 1: Tìm x
a) (x-5) (x-3)+ 2(x-5)=0
b) (x-2)(x^2+2x+4)-(x+2)(x^2-2x+4)=2(x+2)
giúp e với ạ, e cảm ơn
a) (x - 5)(x - 3) + 2(x - 5) = 0
(x - 5)(x - 3 + 2) = 0
(x - 5)(x - 1) = 0
x - 5 = 0 hoặc x - 1 = 0
*) x - 5 = 0
x = 5
*) x - 1 = 0
x = 1
Vậy x = 1; x = 5
b) (x - 2)(x² + 2x + 4) - (x + 2)(x² - 2x + 4) = 2(x + 2)
x³ - 8 - x³ - 8 = 2x + 4
2x = -8 - 8 - 4
2x = -20
x = -20 : 2
x = -10
a)
\(\left(x-5\right)\left(x-3\right)+2\left(x-5\right)=0\)
\(\left(x-5\right)\left(x-3+2\right)=0\)
\(\left(x-5\right)\left(x-1\right)=0\)
\(x-5=0\) hoặc \(x-1=0\)
+) \(x-5=0\\ \Rightarrow x=5\)
+) \(x-1=0\\ \Rightarrow x=1\)
Vậy \(x=1\) hoặc \(x=5\)
b) \(\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)=2\left(x+2\right)\)
\(x^3-8-x^3-8=2x+4\)
\(2x=-8-8-4\)
\(2x=-20\)
\(x=-20:2\)
\(x=-10\)
Vậy \(x=-10\)
Phân tích đa thức sau thành nhân tử
a, \(2^3\)+ 4\(^2\)+6x
b,x\(^2\)-4
c,x\(^2\)-10+25
d,x\(^3\)-4
e,x\(^2\)+xy-3x-3y
g,x\(^2\)-y\(^2\)-4x+4
Giup mk vs ạ bạn nào nhanh mk sẽ vote ạ
Đề bạn có mấy chỗ thiếu mk bổ sung nha
\(a,2^3+4^2+6x=8+16+6x=6x+24=x\left(x+4\right)\\ b,x^2-4=\left(x-2\right)\left(x+2\right)\\ c,x^2-10x+25=\left(x-5\right)^2\\ d,x^3-4x=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\\ e,x^2+xy-3x-3y=x\left(x+y\right)-3\left(x+y\right)=\left(x-3\right)\left(x+y\right)\\ g,x^2-y^2-4x+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Tick plzz
a: Ta có: \(2x^3+4x^2+6x\)
\(=2x\left(x^2+2x+3\right)\)
b: \(x^2-4=\left(x-2\right)\left(x+2\right)\)
c: \(x^2-10x+25=\left(x-5\right)^2\)
d: \(x^3-4x=x\left(x-2\right)\left(x+2\right)\)
e: \(x^2+xy-3x-3y\)
\(=x\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x-3\right)\)
g: \(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-y-2\right)\left(x+y-2\right)\)