Tìm x biết
\(3^n+3^{n+1}=\left(\left(\sqrt{3}\right)^2\right)^3\)
Trông thế mà khó phết
1/ Giải phương trình sau:
\(tan^2\left(x+\dfrac{\pi}{3}\right)+\left(\sqrt{3}-1\right)tan\left(x+\dfrac{\pi}{3}\right)-\sqrt{3}=0\)
2/ Tìm hệ số của số hạng chứa \(x^{26}\) trong khai triển \(\left(\dfrac{1}{x^4}+x^7\right)^n\) . Biết \(C^2_{n+2}-4C^n_{n+1}=2\left(n+1\right)\) (n ∈ N* ; x > 0)
Câu 2:
\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)
\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)
\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)
=>(n+1)(n+2-8-4)=0
=>n=-1(loại) hoặc n=10
=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)
SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)
Số hạng chứa x^26 tương ứng với 11k-40=26
=>k=6
=>Số hạng cần tìm là: \(210x^{26}\)
Tìm x biết: \(n\in N\)
\(\left(a\right)x\sqrt{3}+3=y\sqrt{3}-x\)
\(\left(b\right)\left(x-2\right)\sqrt{25n^2+5}+y-2=0\)
Mình sửa lại chút nhé. tìm x, y là các số hữu tỉ
Tìm các giới hạn sau:
a) \(lim\left(4^n-3^n\right)\)
b) \(lim\left[\left(2^n+1\right)^2-4^n\right]\)
c) \(lim\left(\sqrt{2n^5-3n^2+11}-n^3\right)\)
d) \(lim\left(\sqrt{2n^2+1}-\sqrt{3n^2-1}\right)\)
e) \(lim\sqrt{n^2+3n\sqrt{n}+1}-n\)
\(a=\lim4^n\left(1-\left(\dfrac{3}{4}\right)^n\right)=+\infty.1=+\infty\)
\(b=\lim\left(4^n+2.2^n+1-4^n\right)=\lim2^n\left(2+\dfrac{1}{2^n}\right)=+\infty.2=+\infty\)
\(c=limn^3\left(\sqrt{\dfrac{2}{n}-\dfrac{3}{n^4}+\dfrac{11}{n^6}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n\left(\sqrt{2+\dfrac{1}{n^2}}-\sqrt{3-\dfrac{1}{n^2}}\right)=+\infty\left(\sqrt{2}-\sqrt{3}\right)=-\infty\)
\(e=\lim\dfrac{3n\sqrt{n}+1}{\sqrt{n^2+3n\sqrt{n}+1}+n}=\lim\dfrac{3\sqrt{n}+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{\sqrt{n}}+\dfrac{1}{n^2}}+1}=\dfrac{+\infty}{2}=+\infty\)
Bài toán :
Giải phương trình :
\(\frac{3.\left(x-\sqrt{3}\right)\left(x-\sqrt{5}\right)}{\left(1-\sqrt{3}\right)\left(1-\sqrt{5}\right)}+\frac{4\left(x-1\right)\left(x-\sqrt{5}\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}-5\right)}+\frac{5\left(x-1\right)\left(x-\sqrt{3}\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}-\sqrt{3}\right)}=3x-2\)
Cho 3 số thực x, y, z đôi một khác nhau thỏa mãn : \(\left(y-z\right)\sqrt[3]{1-x^3}+\left(z-x\right)\sqrt[3]{1-y^3}+\left(x+y\right)\sqrt[3]{1-z^3}=0\)
CMR : \(\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)=\left(1-xyz\right)^3\)
Thầy mình gợi ý áp dụng t/c: Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc đc thế này
\(\left(y-z\right)^3\left(1-x^3\right)+\left(z-x\right)^3\left(1-y^3\right)+\left(x-y\right)^3\left(1-z^3\right)=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)chưa biết làm thế nào cả
Áp dụng bổ đề trên kia ta có:
\((y-z)^3(1-x^3)+(z-x)^3(1-y^3)+(x-y)^3(1-z^3)\)
\(=3(x-y)(y-z)(x-z)\sqrt[3]{(1-x^3)(1-y^3)(1-z^3)}\)
Xét VT: \((y-z)^3(1-x^3)+(z-x)^3(1-y^3)+(x-y)^3(1-z^3)\)
\(=(y-z)^3+(z-x)^3+(x-y)^3-[(xy-xz)^3+(yz-xy)^3+(xz-yz)^3]\)
\(=3(x-y)(y-z)(x-z)-3xyz(x-y)(y-z)(x-z)\)
\(=3(x-y)(y-z)(x-z)(1-xyz)\).Suy ra
\(3(x-y)(y-z)(x-z)(1-xyz)\)
\(=3(x-y)(y-z)(x-z)\sqrt[3]{(1-x^3)(1-y^3)(1-z^3)}\)
\(\Leftrightarrow (1-x^3)(1-y^3)(1-z^3)=(1-xyz)^3\)
tìm \(lim\dfrac{\left(2n\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n+1\right)\left(n+2\right)}\)
\(=\lim\dfrac{\left(2+\dfrac{1}{n\sqrt{n}}\right)\left(1+\dfrac{3}{\sqrt{n}}\right)}{\left(1+\dfrac{1}{n}\right)\left(1+\dfrac{2}{n}\right)}=\dfrac{2.1}{1.1}=2\)
Tìm các giới hạn sau:
\(a,lim\dfrac{\sqrt[3]{8n^3+2n}}{-n+3}\)
\(b,lim\dfrac{\left(2n\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n-1\right)\left(3-2n\right)}\)
\(a,lim\dfrac{^3\sqrt{8n^3+2n}}{-n+3}\)
\(=lim\dfrac{^3\sqrt{8+\dfrac{2}{n^2}}}{-1+\dfrac{3}{n}}=\dfrac{^3\sqrt{8}}{-1}=\dfrac{2}{-1}=-2\)
\(\lim\dfrac{\left(2n\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n-1\right)\left(3-2n\right)}=\lim\dfrac{\left(2+\dfrac{1}{n\sqrt{n}}\right)\left(1+\dfrac{3}{\sqrt{n}}\right)}{\left(1-\dfrac{1}{n}\right)\left(\dfrac{3}{n}-2\right)}=\dfrac{2.1}{1.\left(-2\right)}=-1\)
Tìm các giới hạn sau:
a) \(lim\left(\sqrt{4n+1}-2\sqrt{n}\right)\)
b) \(lim\left(\sqrt{n^2+2n}-\sqrt{n^2-2n}-n\right)\)
c) \(lim\left(\sqrt{9^n-3^n}-4^n\right)\)
d) \(lim\left(3n^3+2n^2+n\right)\)
\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)
\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)
9) Tìm n, biết :
\(\sqrt{1+2+3+...+\left(n-1\right)+n+\left(n+1\right)+...+3+2+1}\)
Chó khang không trả lời thì thôi sao chửi tao ngu