Tính
N = \(\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...+\dfrac{10}{46.56}\)
1. Một người đi xe máy từ A đến B với vận tốc trung bình \(36\dfrac{1}{4}\)km/h hết 3,2h. Lúc về người ấy đi với vận tốc trung bình 40 km/h. Tính thời gian người ấy đi từ A đến B.
2.
a)M=\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
b)N=\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{197..199}\)
c)P=\(\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...+\dfrac{10}{46.56}\)
2)
a) M = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)
M = \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
M = \(\dfrac{1}{3}-\dfrac{1}{99}\)
M = \(\dfrac{32}{99}\)
1) Quãng đường AB là :
\(36\dfrac{1}{4}\)km/h . 3.2h = 116 ( km )
Thời gian người ấy đi từ A đến B lúc về là :
116 : 40 = 2.9 ( giờ )
Đ/S : 2.9 giờ
N = \(\dfrac{3}{5.7}+\dfrac{3}{7.9}+\dfrac{3}{9.11}+...+\dfrac{3}{197.199}\)
N = \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+...+\dfrac{2}{197.199}\right)\)
N = \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+...+\dfrac{1}{197}-\dfrac{1}{199}\right)\)
N = \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{199}\right)\)
N = \(\dfrac{3}{2}.\dfrac{194}{995}\)
N = \(\dfrac{291}{995}\)
Thu gọn :
A = \(\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)
Đặt \(A=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)
\(1A=1-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}\right)-\dfrac{1}{22}\)\(1A=1-\dfrac{1}{22}\)
\(1A=\dfrac{22}{22}-\dfrac{1}{22}\)
\(1A=\dfrac{21}{22}\)
\(\dfrac{21}{22}\) không thể rút gọn
\(A=\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{6}{16\cdot22}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}\\ =1-\dfrac{1}{22}\\ =\dfrac{21}{22}\)
Vậy \(A=\dfrac{21}{22}\)
1/1.2 + 2/2.4 + 3/4.7 +...+ 10/46.56 = ?
1:1.2+2:2.4+3:4.7+.......+10:46.56
1/1.2+2/2.4+3/4.7+...+10/46/56
=1-1/2+1/2-1/4+1/4-1/7+...+1/46-1/56
=1-1/56
=55/56
1/1.2+2/2.4+3/4.7+............+10/46.56
1/1.2+2/2.4+3/4.7+...+10/46.56
=1-1/2+1/2-1/4+1/4-1/7+...+1/46-1/56
=1-1/56
=55/56
Tính \(\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+...+\frac{10}{46.56}\)
1.\(\dfrac{1}{2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}+\dfrac{7}{22.29}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}+\dfrac{1}{22}-\dfrac{1}{29}\)
=1-1/29
=28/29
P=1/1.2 + 2/2.4 + 3/4.7 +.........+10/46.56
giúp mình với các bạn ơi!
\(\Rightarrow P=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+......+\frac{1}{46}-\frac{1}{56}\)
\(\Rightarrow P=1-\frac{1}{56}\)
\(\Rightarrow P=\frac{55}{56}\)
bạn trả lời sao mình ko thấy j z
Tính:
a) \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) +...+ \(\dfrac{1}{1999.2000}\)
b) \(\dfrac{1}{1.4}\) + \(\dfrac{1}{4.7}\) + \(\dfrac{1}{7.10}\) +...+ \(\dfrac{1}{100+103}\)
c) \(\dfrac{8}{9}\) - \(\dfrac{1}{72}\) - \(\dfrac{1}{56}\) - \(\dfrac{1}{42}\) -...-\(\dfrac{1}{6}\) - \(\dfrac{1}{2}\)
`#3107`
`a)`
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{1999\cdot2000}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{1999}-\dfrac{1}{2000}\)
\(=1-\dfrac{1}{2000}\)
\(=\dfrac{1999}{2000}\)
`b)`
\(\dfrac{1}{1\cdot4}+\dfrac{1}{4\cdot7}+\dfrac{1}{7\cdot10}+...+\dfrac{1}{100\cdot103}?\)
\(=\dfrac{1}{3}\cdot\left(\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{100\cdot103}\right)\)
\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{3}\cdot\left(1-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{3}\cdot\dfrac{102}{103}\)
\(=\dfrac{34}{103}\)
`c)`
\(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-....-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)\)
\(=\dfrac{8}{9}-\dfrac{8}{9}\\ =0\)
b) Sửa đề:
\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{3}.\left(\dfrac{103}{103}-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{3}.\dfrac{102}{103}\)
\(=\dfrac{34}{103}\)
c) \(\dfrac{8}{9}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-...-\dfrac{1}{6}-\dfrac{1}{2}\)
\(=\dfrac{8}{9}-\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\right)\)
\(=\dfrac{8}{9}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\right)\)
\(=\dfrac{8}{9}-\left(1-\dfrac{1}{9}\right)\)
\(=\dfrac{8}{9}-\left(\dfrac{9}{9}-\dfrac{1}{9}\right)\)
\(=\dfrac{8}{9}-\dfrac{8}{9}\)
\(=0\)
\(#WendyDang\)