Tính A = \(\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}...\dfrac{2499}{2500}\)
a) A = \(\dfrac{8}{9}\) . \(\dfrac{15}{16}\) . \(\dfrac{24}{25}\). ... .\(\dfrac{2499}{2500}\). Tính
b) Tìm các số nguyên n để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên.
a) Ta có \(A=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
\(=\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot\dfrac{4\cdot6}{5\cdot5}\cdot...\cdot\dfrac{49\cdot51}{50\cdot50}\)
\(=\dfrac{2\cdot4\cdot3\cdot5\cdot4\cdot6\cdot...\cdot49\cdot51}{3\cdot3\cdot4\cdot4\cdot5\cdot5\cdot...\cdot50\cdot50}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\cdot\dfrac{4\cdot5\cdot6\cdot...\cdot51}{3\cdot4\cdot5\cdot...\cdot50}\)
= \(\dfrac{2}{50}\cdot17=\dfrac{17}{25}\)
b) Vì n nguyên nên 3n - 1 nguyên
Để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên thì 12 ⋮ ( 3n - 1 ) hay ( 3n - 1 ) ϵ Ư( 12 )
Ư( 12 ) = { \(\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\) }
Lập bảng giá trị
3n - 1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
n | \(\dfrac{2}{3}\) | 0 | 1 | \(\dfrac{-1}{3}\) | \(\dfrac{3}{4}\) | \(\dfrac{-2}{3}\) | \(\dfrac{5}{3}\) | -1 | \(\dfrac{7}{3}\) | \(\dfrac{-5}{3}\) | \(\dfrac{13}{3}\) | \(\dfrac{-11}{3}\) |
Vì n nguyên nên n ϵ { 0; 1; -1 }
Vậy n ϵ { 0; 1; -1 } để phân số \(\dfrac{12}{3n-1}\) có giá trị nguyên
Tính \(A=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.............................\dfrac{2499}{2500}\)
A=2.4/3^2 . 3.5/4^2 . 4.6/5^2 ............ . 49.51/50^2
A=2/3-51/50
A=17/25.
Chúc bạn hok tốt.
Bài này cũng dễ ý mà, vô cùng đơn giản.........
Giải:
Ta có: \(A=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{2499}{2500}.\)
\(=\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{49.51}{50^2}.\)
\(=\dfrac{\left(2.3.4.....49\right)\left(4.5.6.....51\right)}{\left(3.4.5.....50\right)\left(3.4.5.....50\right)}.\)
\(=\dfrac{2.51}{3.50}.\)
\(=\dfrac{17}{25}.\)
CHÚC BN HỌC TỐT!!! ^ _ ^
Đừng quên bình luận nếu bài mik sai nhé!!! - _ -
Còn nếu bài mik đúng thì nhớ tick mik để mik lấy SP nha!!! ^ - ^
https://hoc24.vn/hoi-dap/question/214681.html
tìm kết quả tích sau:
A= \(\dfrac{8}{9}\)x\(\dfrac{15}{16}\)x\(\dfrac{24}{25}\)x...x\(\dfrac{2499}{2500}\)
= 2x4/3x3 x 3x5/4x4 x 4x6/5x5 x.....x 49x51/50x50
= 2x4x3x5x4x6x...49x51/ 3x3x4x4x5x5...50x50
= 2x51/3x50
= 17/25
tính nhanh
A=\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}...\dfrac{899}{30^2}\)
B=\(\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}...\dfrac{2499}{2500}\)
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)
\(A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
\(A=\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
\(A=\dfrac{1.2.3.....29}{2.3.4....30}.\dfrac{3.4.5.....31}{2.3.4.....30}\)
\(A=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)
\(B=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{2499}{2500}\)
\(B=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.....\dfrac{49.51}{50.50}\)
\(B=\dfrac{2.4.3.5.4.6.....49.51}{3.3.4.4.5.5....50.50}\)
\(B=\dfrac{2.3.4......49}{3.4.5....50}.\dfrac{4.5.6.....51}{3.4.5....50}\)
\(B=\dfrac{2}{50}.\dfrac{51}{3}=\dfrac{17}{25}\)
Giải:
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}.\)
\(A=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{29.31}{30^2}.\)
\(A=\dfrac{1.2.3.....29}{2.3.4.....30}.\dfrac{2.3.4.....31}{2.3.4.....30}.\)
\(A=\dfrac{1}{30}.31=\dfrac{30}{31}.\)
Vậy \(A=\dfrac{30}{31}.\)
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}............................\dfrac{899}{30^2}\)
\(\Leftrightarrow A=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}..............................\dfrac{29.31}{30^2}\)
\(\Leftrightarrow A=\dfrac{1.3.2.4.3.5..........29.31}{2.2.3.3.4.4.........30.30}\)
\(\Leftrightarrow A=\dfrac{\left(2.3.........29.30\right).\left(3.4.5......29.31\right)}{\left(2.3....29.30\right).\left(2.3.4.......29.30\right)}\)
\(\Leftrightarrow A=\dfrac{31}{2.30}=\dfrac{31}{60}\)
\(B=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}....................................\dfrac{2499}{2500}\)
\(\Leftrightarrow B=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.............................\dfrac{49.51}{50.50}\)
\(\Leftrightarrow B=\dfrac{\left(2.3.4.....49\right).\left(4.5.6......51\right)}{\left(3.4.5....50\right)\left(3.4.5.....50\right)}=\dfrac{2.51}{50.3}=\dfrac{17}{25}\)
Các bạn giúp với :<
Bài 1:
a, CMR: A = \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+\dfrac{7}{3^2.4^2}+...+\dfrac{21}{10^2.11^2}< 1\)
b, Cho B = \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}.\) CMR: B không phải là số nguyên.
c, So sánh: C = \(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}+...+\dfrac{2021}{2^{2020}}\) với 3.
Cho B= \(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}\). Chứng tỏ B không phải là số nguyên
GIÚP MK
\(B=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+\dfrac{24}{25}+...+\dfrac{2499}{2500}\)
\(=1-\dfrac{3}{4}+1-\dfrac{8}{9}+1-\dfrac{15}{16}+1-\dfrac{24}{25}...+1-\dfrac{2499}{2500}\)
\(=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+\dfrac{1}{25}+...+\dfrac{1}{2500}\right)\)
Lại có: \(49-\left(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+\dfrac{1}{5.5}+...+\dfrac{1}{50.50}\right)< 49-\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{50.51}\right)\)
Mà \(49-\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{50.51}\right)\)
\(=49-\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{50}-\dfrac{1}{51}\right)\)
\(=49-\left(\dfrac{1}{2}-\dfrac{1}{51}\right)=\dfrac{4942}{102}\) \(\notin Z\)
Vậy B không phải là số nguyên
Tính :
A = \(\dfrac{3}{4}.\dfrac{15}{16}.\dfrac{24}{25}....\dfrac{2499}{2500}\)
Ta có: \(A=\dfrac{3}{4}.\dfrac{3.5}{4^2}.\dfrac{4.6}{5^2}...\dfrac{49.51}{50^2}\)
\(A=\dfrac{3}{4}.\dfrac{3.4...49}{4.5...50}.\dfrac{5.6...51}{4.5...50}\)
\(A=\dfrac{3}{4}.\dfrac{3}{50}.\dfrac{51}{4}\)
\(A=\dfrac{459}{800}\)
Chứng minh rằng A=\(\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}>48\)
\(\dfrac{n^2-1}{n^2}=1-\dfrac{1}{n^2}>1-\dfrac{1}{\left(n-1\right)n}\)
Từ đó ta có:
\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{50^2-1}{50^2}>1-\dfrac{1}{1.2}+1-\dfrac{1}{2.3}+...+1-\dfrac{1}{49.50}\)
\(\Rightarrow A>49-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{49.50}\right)\)
\(\Rightarrow A>49-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(\Rightarrow A>49-\left(1-\dfrac{1}{50}\right)=48+\dfrac{1}{50}>48\)
\(A=\dfrac{3}{4}+\dfrac{8}{9}+\dfrac{15}{16}+...+\dfrac{2499}{2500}\\ A=\left(1+1+1+...+1\right)-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\\ A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)\)
Có \(\dfrac{1}{4}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\\ \dfrac{1}{9}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\\ \dfrac{1}{16}=\dfrac{1}{4.4}< \dfrac{1}{3.4}\\ ...\\ \dfrac{1}{2500}=\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1-\dfrac{1}{50}< 1\\ \Rightarrow\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}< 1\)
\(\Rightarrow A=49-\left(\dfrac{1}{4}+\dfrac{1}{9}+\dfrac{1}{16}+...+\dfrac{1}{2500}\right)>49-1\\ \Rightarrow A>48\)
tính:
A= \(\dfrac{8}{9}\).\(\dfrac{15}{16}\).\(\dfrac{24}{25}\)....\(\dfrac{2499}{2500}\)
B=(\(\dfrac{1}{2}\)+1).(\(\dfrac{1}{3}\)+1).(\(\dfrac{1}{4}\)+1)...(\(\dfrac{1}{99}\)+1)