Những câu hỏi liên quan
TD
Xem chi tiết
NN
3 tháng 9 2017 lúc 23:58

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

Bình luận (0)
NT
Xem chi tiết
ST
14 tháng 5 2017 lúc 19:12

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{100^2}\)

\(2^2A=\frac{2^2}{4^2}+\frac{2^2}{6^2}+\frac{2^2}{8^2}+...+\frac{2^2}{100^2}\)

\(4A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow4A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

=> \(4A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

=>\(4A< 1-\frac{1}{50}\)

=> 4A < 1 

=> A < \(\frac{1}{4}\)(đpcm)

Bình luận (0)
NM
Xem chi tiết
NT
21 tháng 3 2023 lúc 23:12

1/4^2<1/3*4

1/5^2<1/4*5

...

1/100^2<1/99*100

=>A<1/3-1/4+1/4-1/5+...+1/99-1/100

=>A<1/3-1/100<1/3

Bình luận (0)
NH
Xem chi tiết
TK
Xem chi tiết
PT
Xem chi tiết
NQ
12 tháng 1 2022 lúc 7:32

ta có : 

\(P=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}=\frac{1}{4}\times\left(\frac{1}{1^2}+\frac{1}{2^2}+..+\frac{1}{50^2}\right)\)

\(< \frac{1}{4}\times\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)=\frac{1}{4}\times\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)\)

\(=\frac{1}{4}\times\left(2-\frac{1}{50}\right)< \frac{1}{4}\times2=\frac{1}{2}\)

Vậy \(P< \frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
CN
6 tháng 2 2020 lúc 20:04

*Có : 52 < 5.6 => \(\frac{1}{5^2}>\frac{1}{5.6}\)

         62 < 6.7 =>\(\frac{1}{6^2}>\frac{1}{6.7}\)

   ....

         1002 < 100 . 101 => \(\frac{1}{100^2}>\frac{1}{100.101}\)

Cộng từng vế có :

\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)

\(A>\frac{1}{5}-\frac{1}{101}\)

Mà \(\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}\)

=> \(A>\frac{96}{505}\)

Mà \(\frac{1}{6}=\frac{96}{576}< \frac{96}{505}\)

=> \(A>\frac{1}{6}\)(1)

*Có 52 > 5.4 => \(\frac{1}{5^2}< \frac{1}{5.4}\)

.......

    1002 > 100.99 => \(\frac{1}{100^2}< \frac{1}{100.99}\)

Cộng từng vế có :

........ => A < \(\frac{96}{400}\)

Có \(\frac{1}{4}=\frac{100}{400}>\frac{96}{400}\)

=> A < \(\frac{1}{4}\)(2)

Từ (1)(2) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa
MG
24 tháng 7 2021 lúc 8:25

\(\text{Ta thấy :}\)

\(\frac{1}{5^2}>\frac{1}{5.6}\)

\(\frac{1}{6^2}>\frac{1}{6.7}\)

\(......................................\)

\(\frac{1}{100^2}>\frac{1}{100.101}\)

\(\Rightarrow A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A>\frac{1}{5}-\frac{1}{101}=\frac{101-5}{105}=\frac{96}{505}>\frac{96}{576}=\frac{1}{6}\)

\(\Rightarrow A>\frac{1}{6}\left(1\right)\)

\(\text{Lại thấy :}\)

\(\frac{1}{5^2}< \frac{1}{5.4}\)

\(\frac{1}{6^2}< \frac{1}{5.6}\)

\(..................................\)

\(\frac{1}{100^2}< \frac{1}{100.99}\)

\(\text{Tương tự như trên ta tính được }:\)

\(A< \frac{96}{400}< \frac{100}{400}=\frac{1}{4}\)

\(\Rightarrow A< \frac{1}{4}\left(2\right)\)

\(\text{Từ (1) và (2)}\Rightarrow\frac{1}{6}< A< \frac{1}{4}\)

Bình luận (0)
 Khách vãng lai đã xóa
NX
Xem chi tiết
NL
25 tháng 7 2021 lúc 15:03

Đặt \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)

\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\) (đpcm)

Bình luận (0)
NH
Xem chi tiết
NM
14 tháng 5 2022 lúc 10:28

 

\(S=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\right)\)

Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{50^2}\)

\(\Rightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(A< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{50-49}{49.50}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{49}-\dfrac{1}{50}\)

\(A< 1-\dfrac{1}{50}\Rightarrow A< 1\)

Ta có \(S=\dfrac{1}{2^2}\left(1+A\right)\)

Ta có

\(A< 1\Rightarrow1+A< 2\Rightarrow S< \dfrac{1}{2^2}.2=\dfrac{1}{2}\)

Bình luận (0)