1/4^2<1/3*4
1/5^2<1/4*5
...
1/100^2<1/99*100
=>A<1/3-1/4+1/4-1/5+...+1/99-1/100
=>A<1/3-1/100<1/3
1/4^2<1/3*4
1/5^2<1/4*5
...
1/100^2<1/99*100
=>A<1/3-1/4+1/4-1/5+...+1/99-1/100
=>A<1/3-1/100<1/3
Chứng minh rằng:
\(S=\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{2}\)
Bài 1: Chứng minh rằng A = 2^1 + 2^2 + 2^3 + 2^4 +.....+2^2010 chia hết cho 7
B = 5 + 5^ 2 + 5^3 + 5^4 + ......+ 5^99 + 5^100 chia hết cho 6
Bài 2: Lấy 1 số có 2 chữ số cộng với 1 số gồm 2 chữ số ấy viết theo thứ tự ngược lại ta luôn được 1 số chia hết cho 11
Cho M =\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\) .Hãy chứng minh M<\(\frac{3}{16}\)
Câu 2 Chứng minh rằng :
\(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}< \frac{1}{50}\)
Chứng minh rằng: S=1+1/2^2+1/3^2+1/4^2+1/5^2+1/6^2+1/7^2+1/8^2+1/9^2+1/10^2 < 2
Giúp vs nha mấy bn ! Thanks!!!!!!!!!!!
Cho A = \(\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+.....+\dfrac{1}{2019^2}\)
Chứng minh rằng \(\dfrac{20}{101}< A< \dfrac{1}{4}\)
bài 1:chứng minh rằng:
a)1+2+3/1+2+3+4=3/5
b)1+2+3+4/1+2+3+4+5=4/6
c)1+2+3+4+5/1+2+3+4+5+6=5/7
bài 2:chứng minh rằng:
1/11-2=12/111-3=123/1111-4=1234/11111-5
bài 3:chứng minh rằng tại sao các phân số sau bằng nhau:
a)-21/28=-39/52
b)-1313/2121=-131313/212121
bài 4:vì sao các phân số sau bằng nhau:
a)482-39/567-28=964-78/1134-56
b)4563-213/711-71=1512-71/237-17
GẤP ... GẤP ... GẤP CÁC BẠN
P = \(\frac{3}{\left(1.2\right)^2}+\frac{5}{\left(2.3\right)^2}+\frac{7}{\left(3.4\right)^2}+...+\frac{4003}{\left(2016.2017\right)^3}\)
Chứng minh rằng : P < 1
A = \(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\)
Chứng minh rằng : 4A < \(10111^6\)
Cho A = \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\). Chứng minh rằng A < \(\dfrac{7}{4}\)
Chứng minh rằng :
1 / 22 + 1 / 32 + 1/ 42 + 1/ 52 + .... + 1/ 1002 < 1