Chứng minh rằng với mọi \(n\in N\); \(n\ge2\) ta có :
\(\dfrac{3}{9.14}+\dfrac{3}{14.19}+\dfrac{3}{19.24}+..........+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}< \dfrac{1}{15}\)
Help me!!!!!!!!!!!!!!!!!!
Chứng minh rằng:
5n-1 ⋮ 4 với mọi n\(\in N\)
Nếu \(n=0\) thì \(5^0-1=1-1=0⋮4\)
Nếu \(n=1\) thì \(5^1-1=5-1=4⋮4\)
Nếu \(n\ge2\) thì 2 số tận cùng khi lũy thừa với cơ số 5 luôn là 25.
\(\Rightarrow5^n-1=\left(...25\right)-1=\left(...24\right)⋮4\)(đpcm)
2 Số tận cùng chia hết cho 4 thì số đó chia hết cho 4.
1.Chứng minh rằng \(2^{2^{6n+2}}+3⋮19\) với ,mọi n\(\in\)N
2.Chứng minh rằng với n>0 ta có 52n-1.22n-15n+1+3n+1.22n-1 chia hết cho 38
Chứng minh rằng:
101n+1-101nchia hết cho 100 (với n\(\in\) N)
25n+1-25n chia hết cho 100 với mọi số tự nhiên n.
n2(n-1)-2n(n-1) chia hết cho 6 với mọi số nguyên n
a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100
c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)
vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3
Mà(2, 3) = 1
⇒n(n-1)(n-2) chia hết cho 2.3 = 6
a) Ta có: \(101^{n+1}-101^n\)
\(=101^n\left(101-1\right)\)
\(=100\cdot101^n⋮100\)
b) Ta có: \(25^{n+1}-25^n\)
\(=25^n\left(25-1\right)\)
\(=25^{n-1}\cdot24⋮100\)
Chứng minh rằng: \(n^3+2n⋮3\)với mọi \(n\in N.\)
Ta xét hai khả năng:
a. Nếu \(n⋮3\)thì rõ ràng \(\left(n^3+2n\right)⋮3.\)
b. Nếu n không chia hết cho 3 thì n có dạng n = 3k + 1 hoặc n = 3k + 2 với k \(\in N\).
*Với \(\text{n = 3k+ 1:}\left(n^3+2n\right)=\left(3k+1\right)^3+2\left(3k+1\right).\)
\(=27k^3+27k^2+9k+1+6k+2=3\left(9k^3+9k^2+5k+1\right)⋮3.\)
*Với \(n=3k+2:n^3+2n=\left(3k+2\right)^3+2\left(3k+2\right).\)
\(=27k^3+54k^2+36k+8+6k+4=3\left(9k^3+18k^2+14k+4\right)⋮3.\)
Mệnh đề được chứng minh.
P/s: không chắc lắm:)
TA Thấy:
\(n^3-n=n\left(n^2-1\right)=\left(n-1\right)n\left(n+1\right)\)
Vì \(n^3-n\)là tích của 3 số tự nhiên liên tiếp nên \(\left(n^3-n\right)⋮3\)
Mà \(3n⋮3\)
do đó \(\left(n^3-n+3n\right)⋮3\)
Hay \(n^3+2n⋮3\left(ĐPCM\right)\)
Chứng minh bằng quy nặp toán học:
1. \(n=1\Rightarrow n^3+2n=1+2.1=3\), vậy mệnh đề đúng với n = 1.
2. Giả sử mệnh đề đúng với k, nghĩa là ta có: \(\left(k^3+2k\right)⋮3\)
Ta chứng minh mệnh đề cũng đúng với k + 1, nghĩa là phải chứng minh:
\([\left(k+1\right)^3+2\left(k+1\right)]⋮3.\)
Ta có: \(\left(k+1\right)^3+2\left(k+1\right)=k^3+3k^2+3k+1+2k+2\)
\(=\left(k^3+2k\right)+3\left(k^2+k+1\right),k\in N.\)
Nhưng \(\left(k^3+2k\right)⋮3\)(theo giả thiết quy nạp); \(3\left(k^2+k+1\right)⋮3\)
Vậy \(\left(k+1\right)^3+2\left(k+1\right)]⋮3.\)Vậy mệnh đề trên đúng với mọi \(n\in N.\)
Chứng minh rằng với mọi \(n\in\mathbb{N}\), ta có:
\(\left(n+45\right)\left(4n^2-1\right)⋮3\)
(câu hỏi đã chỉnh sửa)
Cm: \(\forall\)\(x\in\) N ta có: (n + 45).(4n2 -1) ⋮ 3
Trong biểu thức không hề chứa \(x\) em nhá
Biểu thức chứa \(x\) là biểu thức nào thế em?
Bài này em nghĩ là phải sửa thành với mọi \(n\inℕ\) ạ.
Đặt \(P=\left(n+45\right)\left(4n^2-1\right)\)
Với \(n⋮3\) thì hiển nhiên \(n+45⋮3\), suy ra \(P⋮3\)
Với \(n⋮̸3\) thì \(n^2\equiv1\left[3\right]\) nên \(4n^2\equiv1\left[3\right]\) hay \(4n^2-1⋮3\), suy ra \(P⋮3\)
Vậy, với mọi \(n\inℕ\) thì \(\left(n+45\right)\left(4n^2-1\right)⋮3\) (đpcm)
a) Chứng minh rằng A = n(n + 1)(2n + 1)\(⋮\)6 với mọi n \(\in\)N
b) (8n + 1)(6n + 5) không chia hết cho 2 với mọi n \(\in\)N
(f) Chứng minh rằng với mọi số tự nhiên n > 1 thì: 5^n+2 + 26.5^n + 82n+1 chia hết cho 59.
(g) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 4^2n+1 + 3^n+2chia hết cho 13.
(h) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 5^2n+1 + 2^n+4+ 2^n+1 chia hết cho 23.
(i) Chứng minh rằng với mọi số tự nhiên n > 1 thì số 11n+2 + 122n+1 chia hết cho 133.
(j) Chứng minh rằng với mọi số tự nhiên n > 1: 5^2n−1 .26n+1 + 3^n+1 .2^2n−1 chia hết cho 38
1+2+3+4+5+6+7+8+9=133456 hi hi
đào xuân anh sao mày gi sai hả
???????????????????
Chứng minh rằng :
[ (1 + 2 + 3 + ..... +n ) - 7 ] không chia hết cho 10 , với mọi n \(\in\)N
chứng minh rằng với mọi \(n\in N\),ta có:\(7.5^{2n}+12.6^n⋮19\)
Hoặc bạn cũng có thể làm là:
Do: \(25\equiv6\left(mo\text{d}19\right)\Rightarrow25^n\equiv6^n\left(mo\text{d}19\right)\)
\(\Rightarrow7.25^n+12.6^n\equiv7.6^n+12.6^n\left(mo\text{d}19\right)\)
\(\Rightarrow7.5^{2n}+12.6^n\equiv19.6^n\left(mo\text{d}19\right)\)
Mà: \(19.6^n\equiv0\left(mo\text{d}19\right)\)
\(\Rightarrow7.5^{2n}+12.6^n\equiv0\left(mo\text{d}19\right)\)
Hay 7.52n + 12.6n chia hết cho 19.
(_Bài này mình làm theo phép toán đồng dư bạn có thể tham khảo thêm hoặc nếu đã học 'mod' thì cũng có thể áp dụng_)
b) 7.52n + 12.6n
= 7.25n + 12.6n
= 7.25n - 7.6n + 19.6n
= 7(25n - 6n) + 19.6n
= 7(25 - 6)[X] + 19.6n
= 7.19.[X] + 19.6n
= 19 .(7[X] + 6n)chia hết cho 19
chứng minh rằng : với mọi n thuộc N thì 16^n - 15^n-1 chia hết cho 75
chứng minh rằng : với mọi n thuộc N* thì 5^n + 2.3^n-1 chia hết cho 8