Những câu hỏi liên quan
DX
Xem chi tiết
NT
28 tháng 3 2021 lúc 11:47

a) Vế trái  \(=\dfrac{1.3.5...39}{21.22.23...40}=\dfrac{1.3.5.7...21.23...39}{21.22.23....40}=\dfrac{1.3.5.7...19}{22.24.26...40}\)

               \(=\dfrac{1.3.5.7....19}{2.11.2.12.2.13.2.14.2.15.2.16.2.17.2.18.2.19.2.20}\\ =\dfrac{1.3.5.7.9.....19}{\left(1.3.5.7.9...19\right).2^{20}}=\dfrac{1}{2^{20}}\left(đpcm\right)\)

b) Vế trái

 \(=\dfrac{1.3.5...\left(2n-1\right)}{\left(n+1\right).\left(n+2\right).\left(n+3\right)...2n}\\ =\dfrac{1.2.3.4.5.6...\left(2n-1\right).2n}{2.4.6...2n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1.2.3.4...\left(2n-1\right).2n}{2^n.1.2.3.4...n.\left(n+1\right)\left(n+2\right)...2n}\\ =\dfrac{1}{2^n}.\\ \left(đpcm\right)\)

              

Bình luận (0)
H24
Xem chi tiết
NT
20 tháng 4 2023 lúc 14:40

\(S=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

=>\(S< =\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)

=>\(S< =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{n}\right)=\dfrac{1}{4}\cdot\dfrac{n-1}{n}< =\dfrac{1}{4}\)

Bình luận (0)
DD
Xem chi tiết
DX
Xem chi tiết
AH
23 tháng 5 2021 lúc 20:57

Lời giải:

\(M=\frac{1.2.3.4.5.6.7...(2n-1)}{2.4.6...(2n-2).(n+1)(n+2)....2n}=\frac{(2n-1)!}{2.1.2.2.2.3...2(n-1).(n+1).(n+2)...2n}\)

\(=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).(n+1).(n+2)....2n}=\frac{(2n-1)!}{2^{n-1}.1.2...(n-1).n(n+1)..(2n-1).2}\)

\(=\frac{(2n-1)!}{2^{n-1}.(2n-1)!.2}=\frac{1}{2^{n-1}.2}<\frac{1}{2^{n-1}}\)

Ta có đpcm.

Bình luận (0)
SN
Xem chi tiết
LL
15 tháng 9 2021 lúc 18:37

\(1^2+2^2+...+n^2=1+2\left(1+1\right)+...+n\left(n-1+1\right)=1+2+1.2+3+2.3+...+n+\left(n-1\right)n\)

\(=\left(1+2+3+...+n\right)+\left[1.2+2.3+...+\left(n-1\right)n\right]=\dfrac{\left(n+1\right)\left(\dfrac{n-1}{1}+1\right)}{2}+\dfrac{1.2.3+2.3.3+...+\left(n-1\right)n.3}{3}=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3+2.3.\left(4-1\right)+...+\left(n-1\right)n\left[\left(n+1\right)-\left(n-2\right)\right]}{3}\)

\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{1.2.3-1.2.3+2.3.4-...-\left(n-2\right)\left(n-1\right)n+\left(n-1\right)n\left(n+1\right)}{3}\)

\(=\dfrac{n\left(n+1\right)}{2}+\dfrac{\left(n-1\right)n\left(n+1\right)}{3}=\dfrac{3n\left(n+1\right)+2\left(n-1\right)n\left(n+1\right)}{6}=\dfrac{2n^3+3n^2+n}{6}=\dfrac{1}{3}n^3+\dfrac{1}{2}n^2+\dfrac{1}{6}n=\dfrac{1}{3}n\left(n^2+\dfrac{3}{2}n+\dfrac{1}{2}\right)=\dfrac{1}{3}n\left(n+\dfrac{1}{2}\right)\left(n+1\right)\)

Bình luận (1)
DV
Xem chi tiết
DV
Xem chi tiết
H24
Xem chi tiết
H24
3 tháng 1 2021 lúc 20:52

MÌNH CẢM ƠN TRƯỚC NHA.

 

Bình luận (0)
SM
Xem chi tiết
ND
9 tháng 2 2018 lúc 19:32

\(a^2+\left(a+1\right)^2=a^2+a^2+2a+1\\ =2a^2+2a+1>2a\left(a+1\right)\\ \Rightarrow\dfrac{1}{a^2+\left(a+1\right)^2}< \dfrac{1}{2a\left(a+1\right)}\)

\(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{25}+...+\dfrac{1}{n^2+\left(n+1\right)^{^2}}\\ =\dfrac{1}{1^2+2^2}+\dfrac{1}{2^2+3^2}+\dfrac{1}{3^2+4^2}+...+\dfrac{1}{n^2+\left(n+1\right)^2}\\ < \dfrac{1}{2.1.\left(1+2\right)}+\dfrac{1}{2.2\left(2+1\right)}+....+\dfrac{1}{2n\left(n+1\right)}\\ =\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{n+1}\right)\\ =\dfrac{1}{2}\left(\dfrac{5}{6}-\dfrac{1}{n+1}\right)\\ =\dfrac{5}{12}-\dfrac{1}{2n+2}< \dfrac{5}{12}< \dfrac{9}{20}\)

Bình luận (0)